Squaring the circle

Journal of the Indian Mathematical Society, V, 1913, 132
Let $P Q R$ be a circle with center O, of which a diameter is $P R$. Bisect $P O$ at H and let T be the point of trisection of $O R$ nearer R. Draw $T Q$ perpendicular to $P R$ and place the chord $R S=T Q$.
Join $P S$, and draw $O M$ and $T N$ parallel to $R S$. Place a chord $P K=P M$, and draw the tangent $P L=M N$. Join $R L, R K$ and $K L$. Cut off $R C=R H$. Draw $C D$ parallel to $K L$, meeting $R L$ at D.

Then the square on $R D$ will be equal to the circle $P Q R$ approximately. For

$$
R S^{2}=\frac{5}{36} d^{2},
$$

where d is the diameter of the circle. Therefore

$$
P S^{2}=\frac{31}{36} d^{2} .
$$

But $P L$ and $P K$ are equal to $M N$ and $P M$ respectively. Therefore

$$
P K^{2}=\frac{31}{144} d^{2}, \quad \text { and } P L^{2}=\frac{31}{324} d^{2} .
$$

Hence

$$
R K^{2}=P R^{2}-P K^{2}=\frac{113}{144} d^{2},
$$

and

$$
R L^{2}=P R^{2}+P L^{2}=\frac{355}{324} d^{2} .
$$

But

$$
\frac{R K}{R L}=\frac{R C}{R D}=\frac{3}{2} \sqrt{\frac{113}{355}},
$$

and

$$
R C=\frac{3}{4} d .
$$

Therefore

$$
R D=\frac{d}{2} \sqrt{\frac{355}{113}}=r \sqrt{\pi}, \text { very nearly }
$$

Note: If the area of the circle be 140,000 square miles, then $R D$ is greater than the true length by about an inch.

