Highly composite numbers

Proceedings of the London Mathematical Society, 2, XIV, 1915, 347 - 409

CONTENTS

I. $\S \S$ 1. Introduction and summary of results.
II. 2-5. Elementary results concerning the order of $d(N)$.
2. The order of $d(N)$ when the prime divisors of N are known.
3. The order of $d(N)$ when the number of prime divisors is known.
$4-5$. The order of $d(N)$ when nothing is known about N.
III. 6-31. The structure of highly composite numbers.
6. Definition of a highly composite number.
7. A table of the first 102 highly composite numbers.
8. First standard form of a highly composite number. The index of the largest prime divisor.
9. Alternative standard form of a highly composite number.
$10-24$. The indices of the prime divisors in the first standard form.
25-27. The final primes in the second standard form.
28. The ratio of two consecutive highly composite numbers.
29. The form of $d(N)$ for highly composite values of N.
30. The order of $d d(N)$ for highly composite values of N.
31. Some apparently paradoxical forms of $d(N)$ in the table.
IV. 32-38. Superior highly composite numbers.
32. Definition of a superior highly composite number.
33. The exact form of a superior highly composite number.
34. The number of divisors of a superior highly composite number.
35. The maximum value of $d(N) N^{1 / x}$ for a given value of x.
36. Consecutive superior highly composite numbers.
37. The number of superior highly composite numbers less than a given number. A table of the first 50 superior highly composite numbers.
38. Superior highly composite numbers and the maximum order of $d(N)$.
V. 39-45. Application to the determination of the order of $d(N)$.
39. The maximum order of $d(N)$, assuming the prime number theorem.

40-43. The maximum order of $d(N)$, assuming the Riemann hypothesis.
44. The order of the number of superior highly composite numbers less than N.
45. Highly composite numbers between consecutive superior highly composite numbers. General remarks.
VI. §§ 46-51. Special forms of N.
46. The maximum order of $d(N)$ for a special form of N.
47. The maximum order of $d(N)$ when $d(N)$ is a power of 2 .
48. The maximum order of $d(N)$ when the indices of the prime divisors of N are never less than a given integer.
49. The maximum order of $d(N)$ when N is a perfect nth power.
50. The number of divisors of the least common multiple of the first N natural numbers.
51. The number of divisors of N !.
52. On $d d(n)$ and $d d d(n)$.

[^0]I.

Introduction and Summary of Results

1. The number $d(N)$ of divisors of N varies with extreme irregularity as N tends to infinity, tending itself to infinity or remaining small according to the form of N. In this paper I prove a large number of results which add a good deal to our knowledge of the behaviour of $d(N)$.
It was proved by Dirichlet * that

$$
\frac{d(1)+d(2)+d(3)+\cdots+d(N)}{N}=\log N+2 \gamma-1+O\left(\frac{1}{\sqrt{N}}\right) \dagger
$$

where γ is the Eulerian constant. Voronöi ${ }^{\ddagger}$ and Landau ${ }^{\S}$ have shewn that the error term may be replaced by $O\left(N^{-\frac{2}{3}+\epsilon}\right)$, or indeed $O\left(N^{-\frac{2}{3}} \log N\right)$. It seems not unlikely that the real value of the error is of the form $O\left(N^{-\frac{3}{4}+\epsilon}\right)$, but this is as yet unproved. Mr. Hardy has, however, shewn recently that the equation

$$
\frac{d(1)+d(2)+d(3)+\cdots d(N)}{N}=\log N+2 \gamma-1+o\left(N^{-\frac{3}{4}}\right)
$$

is certainly false. He has also proved that

$$
\begin{aligned}
d(1)+d(2))+\cdots & \left.+d(N-1)+\frac{1}{2} d(N)\right)-N \log N-(2 \gamma-1) N-\frac{1}{4} \\
& =\sqrt{N} \sum_{1}^{\infty} \frac{d(n)}{\sqrt{n}}\left[H_{1}\{4 \pi \sqrt{(n N)}\}-Y_{1}\{4 \pi \sqrt{(n N)}\}\right]
\end{aligned}
$$

where Y_{n} is the ordinary second solution of Bessel's equation, and

$$
H_{1}(x)=\frac{2}{\pi} \int_{1}^{\infty} \frac{w e^{-x w} d w}{\sqrt{\left(w^{2}-1\right)}}
$$

and that the series on the right-hand side is the sum of the series

$$
\frac{N^{\frac{1}{4}}}{\pi \sqrt{2}} \sum_{1}^{\infty} \frac{d(n)}{n^{\frac{3}{4}}} \cos \left\{4 \pi \sqrt{(n N)}-\frac{1}{4} \pi\right\}
$$

and an absolutely and uniformly convergent series.

[^1]The "average" order of $d(N)$) is thus known with considerable accuracy. In this paper I consider, not the average order of $d(N)$), but its maximum order. This problem has been much less studied. It is obvious that

$$
d(N)<2 \sqrt{N}
$$

It was shewn by Wigert* that

$$
\begin{equation*}
d(N)<2^{\frac{\log N}{\log \log N}(1+\epsilon)} \tag{i}
\end{equation*}
$$

for all positive values of ϵ and all sufficiently large values of N, and that

$$
\begin{equation*}
d(N)>2^{\frac{\log N}{\log \log N}(1-\epsilon)} \tag{ii}
\end{equation*}
$$

for an infinity of values of N. From (i) it follows in particular that

$$
d(N)<N^{\delta}
$$

for all positive values of δ and all sufficiently large values of N.
Wigert proves (i) by purely elementary reasoning, but uses the "Prime Number Theorem" ${ }^{\dagger}$ to prove (ii). This is, however, unnecessary, the inequality (ii) being also capable of elementary proof. In § 5 I shew, by elementary reasoning, that

$$
d(N)<2^{\frac{\log N}{\log \log N}+O \frac{\log N}{(\log \log N)^{2}}}
$$

for all values of N, and

$$
d(N)>2^{\frac{\log N}{\log \log N}+O \frac{\log N}{(\log \log N)^{2}}}
$$

for an infinity of values of N. I also shew later on that, if we assume all known results concerning the distribution of primes, then

$$
d(N)<2^{L i(\log N)+O\left[\log N e^{-a \sqrt{(\log \log N)}]}\right.}
$$

for all values of N, and

$$
d(N)>2^{L i(\log N)+O\left[\log N e^{-a \sqrt{(\log \log N)}}\right]}
$$

for an infinity of values of N, where a is a positive constant.
I then adopt a different point of view, I define a highly composite number as a number whose number of divisors exceeds that of all its predecessors. Writing such a number in the form

$$
N=2^{a_{2}} \cdot 3^{a_{3}} \cdot 5^{a_{5}} \cdots p^{a_{p}}
$$

[^2]I prove that

$$
a_{2} \geq a_{3} \geq a_{5} \geq \cdots \geq a_{p}
$$

and that

$$
a_{p}=1,
$$

for all highly composite values of N except 4 and 36 .
I then go on to prove that the indices near the beginning form a decreasing sequence in the stricter sense, i.e., that

$$
a_{2}>a_{3}>a_{5}>\cdots>a_{\lambda},
$$

where λ is a certain function of p.
Near the end groups of equal indices may occur, and I prove that there are actually groups of indices equal to

$$
1,2,3,4, \ldots, \mu
$$

where μ again is a certain function of p. I also prove that if λ is fairly small in comparison with p, then

$$
a_{\lambda} \log \lambda \sim \frac{\log p}{\log 2}
$$

and that the later indices can be assigned with an error of at most unity.
I prove also that two successive highly composite numbers are asymptotically equivalent, i.e., that the ratio of two consecutive such numbers tends to unity. These are the most striking results. More precise ones will be found in the body of the paper. These results give us a fairly accurate idea of the structure of a highly composite number.
I then select from the general aggregate of highly composite numbers a special set which I call "superior highly composite numbers". I determine completely the general form of all such numbers, and I shew how a combination of the idea of a superior highly composite number with the assumption of the truth of the Riemann hypothesis concerning the roots of the ζ-function leads to even more precise results concerning the maximum order of $d(N)$. These results naturally differ from all which precede in that they depend on the truth of a hitherto unproved hypothesis.

II.

Elementary Results concerning the Order of $d(N)$.
2. Let $d(N)$ denote the number of divisors of N, and let

$$
\begin{equation*}
N=p_{1}^{a_{1}} p_{2}^{a_{2}} p_{3}^{a_{3}} \cdots p_{n}^{a_{n}} \tag{1}
\end{equation*}
$$

where $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ are a given set of n primes. Then

$$
\begin{equation*}
d(N)=\left(1+a_{1}\right)\left(1+a_{2}\right)\left(1+a_{3}\right) \cdots\left(1+a_{n}\right) . \tag{2}
\end{equation*}
$$

From (1) we see that

$$
\begin{aligned}
& (1 / n) \log \left(p_{1} p_{2} p_{3} \cdots p_{n} N\right) \\
& \quad=(1 / n)\left\{\left(1+a_{1}\right) \log p_{1}+\left(1+a_{2}\right) \log p_{2}+\cdots+\left(1+a_{n}\right) \log p_{n}\right\} \\
& \quad>\left\{\left(1+a_{1}\right)\left(1+a_{2}\right)\left(1+a_{3}\right) \cdots\left(1+a_{n}\right) \log p_{1} \log p_{2} \cdots \log p_{n}\right\}^{1 / n} .
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
d(N)<\frac{\left\{(1 / n) \log \left(p_{1} p_{2} p_{3} \cdots p_{n} N\right)\right\}^{n}}{\log p_{1} \log p_{2} \log p_{3} \cdots \log p_{n}} \tag{3}
\end{equation*}
$$

for all values of N.
We shall now consider how near to this limit it is possible to make $d(N)$ by choice of the indices $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$. Let us suppose that

$$
\begin{equation*}
1+a_{m}=v \frac{\log p_{n}}{\log p_{m}}+\epsilon_{m}(m=1,2,3, \ldots, n) \tag{4}
\end{equation*}
$$

where v is a large integer and $-\frac{1}{2}<\epsilon_{m}<\frac{1}{2}$. Then, from (4), it is evident that

$$
\begin{equation*}
\epsilon_{n}=0 . \tag{5}
\end{equation*}
$$

Hence, by a well-known theorem due to Dirichlet*, it is possible to choose values of v as large as we please and such that

$$
\begin{equation*}
\left|\epsilon_{1}\right|<\epsilon,\left|\epsilon_{2}\right|<\epsilon,\left|\epsilon_{3}\right|<\epsilon, \ldots,\left|\epsilon_{n-1}\right|<\epsilon, \tag{6}
\end{equation*}
$$

where $\epsilon \leq v^{-1 /(n-1)}$. Now let

$$
\begin{equation*}
t=v \log p_{n}, \quad \delta_{m}=\epsilon_{m} \log p_{m} . \tag{7}
\end{equation*}
$$

Then from (1), (4) and (7), we have

$$
\begin{equation*}
\log \left(p_{1} p_{2} p_{3} \cdots p_{n} N\right)=n t+\sum_{1}^{n} \delta_{m} . \tag{8}
\end{equation*}
$$

Similarly, from (2), (4) and (7) we see that

$$
\begin{aligned}
d(N) & =\frac{\left(t+\delta_{1}\right)\left(t+\delta_{2}\right) \cdots\left(t+\delta_{n}\right)}{\log p_{1} \log p_{2} \log p_{3} \cdots \log p_{n}} \\
& =\frac{t^{n} \exp \left\{\frac{\sum \delta_{m}}{t}-\frac{\sum \delta_{m}^{2}}{2 t^{2}}+\frac{\sum \delta_{m}^{3}}{3 t^{3}}-\cdots\right\}}{\log p_{1} \log p_{2} \log p_{3} \cdots \log p_{n}}
\end{aligned}
$$

[^3]\[

$$
\begin{align*}
= & \left(t+\frac{\sum \delta_{m}}{n}\right)^{n} \frac{\exp \left\{-\frac{n \sum \delta_{m}^{2}-\left(\sum \delta_{m}\right)^{2}}{2 n t^{2}}+\frac{n^{2} \sum \delta_{m}^{3}-\left(\sum \delta_{m}\right)^{3}}{3 n^{2} t^{3}}-\cdots\right\}}{\log p_{1} \log p_{2} \log p_{3} \cdots \log p_{n}} \\
= & \frac{\left\{(1 / n) \log \left(p_{1} p_{2} p_{3} \cdots p_{n} N\right)\right\}^{n}}{\log p_{1} \log p_{2} \cdots \log p_{n}} \\
& {\left[1-\frac{1}{2}(\log N)^{-2}\left\{n^{2} \sum \delta_{m}^{2}-n\left(\sum \delta_{m}\right)^{2}\right\}+\cdots\right], } \tag{9}
\end{align*}
$$
\]

in virtue of (8)). From (6), (7) and (9) it follows that it is possible to choose the indices $a_{1}, a_{2}, \ldots, a_{n}$ so that

$$
\begin{equation*}
d(N)=\frac{\left\{(1 / n) \log \left(p_{1} p_{2} p_{3} \cdots p_{n} N\right)\right\}^{n}}{\log p_{1} \log p_{2} \cdots \log p_{n}}\left\{1-O(\log N)^{-2 n /(n-1)}\right\} \tag{10}
\end{equation*}
$$

where the symbol O has its ordinary meaning.
The following examples shew how close an approximation to $d(N)$ may be given by the right-hand side of (3). If

$$
N=2^{72} \cdot 7^{25}
$$

then, according to (3), we have

$$
\begin{equation*}
d(N)<1898.00000685 \ldots ; \tag{11}
\end{equation*}
$$

and as a matter of fact $d(N)=1898$. Similarly, taking

$$
N=2^{568} \cdot 3^{358}
$$

we have, by (3),

$$
\begin{equation*}
d(N))<204271.000000372 \ldots \tag{12}
\end{equation*}
$$

while the actual value of $d(N)$ is 204271. In a similar manner, when

$$
N=2^{64} \cdot 3^{40} \cdot 5^{27}
$$

we have, by (3),

$$
\begin{equation*}
d(N)<74620.00412 \ldots ; \tag{13}
\end{equation*}
$$

while actually

$$
d(N)=74620
$$

3. Now let us suppose that, while the number n of different prime factors of N remains fixed, the primes p_{ν}, as well as the indices a_{ν}, are allowed to vary. It is evident that $d(N)$,
considered as a function of N, is greatest when the primes p_{ν} are the first n primes, say $2,3,5, \ldots, p$, where p is the nth prime. It therefore follows from (3) that

$$
\begin{equation*}
d(N)<\frac{\{(1 / n) \log (2 \cdot 3 \cdot 5 \cdots p \cdot N)\}^{n}}{\log 2 \log 3 \log 5 \cdots \log p} \tag{14}
\end{equation*}
$$

and from (10) that it is possible to choose the indices so that

$$
\begin{equation*}
d(N)=\frac{\{(1 / n) \log (2 \cdot 3 \cdot 5 \cdots p \cdot N)\}^{n}}{\log 2 \log 3 \log 5 \cdots \log p}\left\{1-O(\log N)^{-2 n /(n-1)}\right\} . \tag{15}
\end{equation*}
$$

4. Before we proceed to consider the most general case, in which nothing is known about N, we must prove certain preliminary results. Let $\pi(x)$ denote the number of primes not exceeding x, and let

$$
\vartheta(x)=\log 2+\log 3+\log 5+\cdots+\log p
$$

and

$$
\varpi(x)=\log 2 \cdot \log 3 \cdot \log 5 \cdots \log p
$$

where p is the largest prime not greater than x; also let $\phi(t)$ be a function of t such that $\phi^{\prime}(t)$ is continuous between 2 and x. Then

$$
\begin{align*}
\int_{2}^{x} \pi(t) \phi^{\prime}(t) d t= & \int_{2}^{3} \phi^{\prime}(t) d t+2 \int_{3}^{5} \phi^{\prime}(t) d t+3 \int_{5}^{7} \phi^{\prime}(t) d t \\
& +4 \int_{7}^{11} \phi^{\prime}(t) d t+\cdots+\pi(x) \int_{p}^{x} \phi^{\prime}(t) d t \\
= & \{\phi(3)-\phi(2)\}+2\{\phi(5)-\phi(3)\}+3\{\phi(7)-\phi(5)\} \\
& +4\{\phi(11)-\phi(7)\}+\cdots+\pi(x)\{\phi(x)-\phi(p)\} \\
= & \pi(x)) \phi(x)-\{\phi(2)+\phi(3)+\phi(5)+\cdots+\phi(p)\} . \tag{16}
\end{align*}
$$

As an example let us suppose that $\phi(t)=\log t$. Then we have

$$
\begin{equation*}
\pi(x) \log x-\vartheta(x)=\int_{2}^{x} \frac{\pi(t)}{t} d t \tag{17}
\end{equation*}
$$

Again let us suppose that $\phi(t)=\log \log t$. Then we see that

$$
\begin{equation*}
\pi(x) \log \log x-\log \varpi(x)=\int_{2}^{x} \frac{\pi(t)}{t \log t} d t . \tag{18}
\end{equation*}
$$

But

$$
\int_{2}^{x} \frac{\pi(t)}{t \log t} d t=\frac{1}{\log x} \int_{2}^{x} \frac{\pi(t)}{t} d t+\int_{2}^{x}\left(\frac{1}{u(\log u)^{2}} \int_{2}^{u} \frac{\pi(t)}{t} d t\right) d u .
$$

Hence we have

$$
\begin{align*}
& \pi(x) \log \left\{\frac{\vartheta(x)}{\pi(x)}\right\}-\log \varpi(x) \\
& \quad=\pi(x) \log \left\{\frac{\vartheta(x)}{\pi(x) \log x}\right\}+\frac{1}{\log x} \int_{2}^{x} \frac{\pi(t)}{t} d t+\int_{2}^{x}\left(\frac{1}{u(\log u)^{2}} \int_{2}^{u} \frac{\pi(t)}{t} d t\right) d u . \tag{19}
\end{align*}
$$

But

$$
\begin{aligned}
\pi(x) \log \left\{\frac{\vartheta(x)}{\pi(x) \log x}\right\} & =\pi(x) \log \left\{1-\frac{\pi(x) \log x-\vartheta(x)}{\pi(x) \log x}\right\} \\
& =\pi(x) \log \left\{1-\frac{1}{\pi(x) \log x} \int_{2}^{x} \frac{\pi(t)}{t} d t\right\} \\
& <-\frac{1}{\log x} \int_{2}^{x} \frac{\pi(t)}{t} d t
\end{aligned}
$$

and so

$$
\begin{equation*}
\pi(x) \log \left\{\frac{\vartheta(x)}{\pi(x) \log x}\right\}+\frac{1}{\log x} \int_{2}^{x} \frac{\pi(t)}{t} d t<0 \tag{20}
\end{equation*}
$$

Again,

$$
\begin{aligned}
\pi(x) \log \left\{\frac{\vartheta(x)}{\pi(x) \log x}\right\} & =-\pi(x) \log \left\{1+\frac{\pi(x) \log x-\vartheta(x)}{\vartheta(x)}\right\} \\
& =-\pi(x) \log \left\{1+\frac{1}{\vartheta(x)} \int_{2}^{x} \frac{\pi(t)}{t} d t\right\}>-\frac{\pi(x)}{\vartheta(x)} \int_{2}^{x} \frac{\pi(t)}{t} d t
\end{aligned}
$$

and so

$$
\begin{align*}
\pi(x) \log \left\{\frac{\vartheta(x)}{\pi(x) \log x}\right\}+\frac{1}{\log x} \int_{2}^{x} \frac{\pi(t)}{t} d t & >-\frac{\pi(x) \log x-\vartheta(x)}{\vartheta(x) \log x} \int_{2}^{x} \frac{\pi(t)}{t} d t \\
& =-\frac{1}{\vartheta(x) \log x}\left\{\int_{2}^{x} \frac{\pi(t)}{t} d t\right\}^{2} \tag{21}
\end{align*}
$$

It follows from (19), (20) and (21) that

$$
\begin{aligned}
\int_{2}^{x}\left(\frac{1}{u(\log u)^{2}} \int_{2}^{u} \frac{\pi(t)}{t} d t\right) d u & >\pi(x) \log \left\{\frac{\vartheta(x)}{\pi(x)}\right\}-\log \varpi(x) \\
& >\int_{2}^{x}\left(\frac{1}{u(\log u)^{2}} \int_{2}^{u} \frac{\pi(t)}{t} d t\right) d u \\
& -\frac{1}{\vartheta(x) \log x}\left\{\int_{2}^{x} \frac{\pi(t)}{t} d t\right\}^{2}
\end{aligned}
$$

Now it is easily proved by elementary methods* that

$$
\pi(x)=O\left(\frac{x}{\log x}\right), \frac{1}{\vartheta(x)}=O\left(\frac{1}{x}\right)
$$

and so

$$
\int_{2}^{x} \frac{\pi(t)}{t} d t=O\left(\frac{x}{\log x}\right)
$$

Hence

$$
\int_{2}^{x}\left(\frac{1}{u(\log u)^{2}} \int_{2}^{u} \frac{\pi(t)}{t} d t\right) d u=\int_{2}^{x} O\left\{\frac{1}{(\log u)^{3}}\right\} d u=O\left\{\frac{x}{(\log x)^{3}}\right\}
$$

and

$$
\frac{1}{\vartheta(x) \log x}\left\{\int_{2}^{x} \frac{\pi(t)}{t} d t\right\}^{2}=\frac{1}{\vartheta(x) \log x} O\left\{\frac{x^{2}}{(\log x)^{2}}\right\}=O\left\{\frac{x}{(\log x)^{3}}\right\}
$$

Hence we see that

$$
\begin{equation*}
\frac{\{\vartheta(x) / \pi(x)\}^{\pi(x)}}{\varpi(x)}=e^{O\left[x /(\log x)^{3}\right]} . \tag{22}
\end{equation*}
$$

5. We proceed to consider the case in which nothing is known about N. Let

$$
N^{\prime}=2^{a_{1}} \cdot 3^{a_{2}} \cdot 5^{a_{3}} \cdots p^{a_{n}} .
$$

Then it is evident that $d(N)=d\left(N^{\prime}\right)$, and that

$$
\begin{equation*}
\vartheta(p) \leq \log N^{\prime} \leq \log N . \tag{23}
\end{equation*}
$$

[^4]It follows from (3) that

$$
\begin{align*}
d(N) & =d\left(N^{\prime}\right)<\frac{1}{\varpi(p)}\left\{\frac{\vartheta(p)+\log N^{\prime}}{\pi(p)}\right\}^{\pi(p)} \\
& \leq\left\{1+\frac{\log N}{\vartheta(p)}\right\}^{\pi(p)} \frac{\{\vartheta(p) / \pi(p)\}^{\pi(p)}}{\varpi(p)} \\
& =\left\{1+\frac{\log N}{\vartheta(p)}\right\}^{\pi(p)} e^{O\left[p /(\log p)^{3}\right]}=\left\{1+\frac{\log N}{\vartheta(p)}\right\}^{\pi(p)+O\left[p /(\log p)^{3}\right]} \tag{24}
\end{align*}
$$

in virtue of (22) and (23). But from (17) we know that

$$
\pi(p) \log p-\vartheta(p)=O\left(\frac{p}{\log p}\right)
$$

and so

$$
\vartheta(p)=\pi(p)\{\log p+O(1)\}=\pi(p)\{\log \vartheta(p)+O(1)\}
$$

Hence

$$
\begin{equation*}
\pi(p)=\vartheta(p)\left\{\frac{1}{\log \vartheta(p)}+O \frac{1}{\{\log \vartheta(p)\}^{2}}\right\} . \tag{25}
\end{equation*}
$$

It follows from (24) and (25) that

$$
d(N) \leq\left\{1+\frac{\log N}{\vartheta(p)}\right\}^{\frac{\vartheta(p)}{\log \vartheta(p)}+O \frac{\vartheta(p)}{[\log \vartheta(p)]^{2}}} .
$$

Writing t instead of $\vartheta(p)$, we have

$$
\begin{equation*}
d(N) \leq\left(1+\frac{\log N}{t}\right)^{\frac{t}{\log t}+O \frac{t}{(\log t)^{2}}} \tag{26}
\end{equation*}
$$

and from (23) we have

$$
\begin{equation*}
t \leq \log N \tag{27}
\end{equation*}
$$

Now, if N is a function of t, the order of the right-hand side of (26), considered as a function of N, is increased when N is decreased in comparison with t, and decreased when N is increased in comparison with t. Thus the most unfavourable hypothesis is that N, considered as a function of t, is as small as is compatible with the relation (27). We may therefore write $\log N$ for t in (26). Hence

$$
\begin{equation*}
d(N)<2^{\frac{\log N}{\log \log N}+O \frac{\log N}{(\log \log N)^{2}}}, \tag{28}
\end{equation*}
$$

for all values of N^{*}
The inequality (28) has been proved by purely elementary reasoning. We have not assumed, for example, the prime number theorem, expressed by the relation

$$
\pi(x) \sim \frac{x}{\log x} . \dagger
$$

We can also, without assuming this theorem, shew that the right-hand side of (28) is actually the order of $d(N)$ for an infinity of values of N. Let us suppose that

$$
N=2 \cdot 3 \cdot 5 \cdot 7 \cdots p
$$

Then

$$
d(N)=2^{\pi(p)}=2^{\frac{t}{\log t}+O \frac{t}{(\log t)^{2}}},
$$

in virtue of (25). Since $\log N=\vartheta(p)=t$, we see that

$$
d(N)=2^{\frac{\log N}{\log \log N}+O \frac{\log N}{(\log \log N)^{2}}}
$$

for an infinity of values of N. Hence the maximum order of $d(N)$ is

$$
2^{\frac{\log N}{\log \log N}+O \frac{\log N}{(\log \log N)^{2}}} .
$$

III.

The Structure of Highly Composite Numbers.
6. A number N may be said to be a highly composite number, if $d\left(N^{\prime}\right)<d(N)$ for all values of N^{\prime} less than N. It is easy to see from the definition that, if N is highly composite and $d\left(N^{\prime}\right)>d(N)$, then there is at least one highly composite number M, such that

$$
\begin{equation*}
N<M \leq N^{\prime} . \tag{29}
\end{equation*}
$$

* If we assume nothing about $\pi(x)$, we can shew that

$$
d(N)<2^{\frac{\log N}{\log \log N}+O \frac{\log N \log \log \log N}{(\log \log N)^{2}}}
$$

If we assume the prime number theorem, and nothing more, we can shew that

$$
d(N)<2^{\frac{\log N}{\log \log N}+[1+O(1)] \frac{\log N}{(\log \log N)^{2}}}
$$

If we assume that
we can shew that

$$
\pi(x)=\frac{x}{\log x}+O \frac{x}{(\log x)^{2}}
$$

$$
d(N)<2^{\frac{\log N}{\log \log N}+\frac{\log N}{(\log \log N)^{2}}+O \frac{\log N}{(\log \log N)^{3}}}
$$

$$
{ }^{\dagger} \phi(x) \sim \Psi(x) \text { means that } \phi(x) / \Psi(x) \rightarrow 1 \text { as } x \rightarrow \infty
$$

if N and N^{\prime} are consecutive highly composite numbers, then $d(M) \leq d(N)$ for all values of M between N and N^{\prime}. It is obvious that

$$
\begin{equation*}
d(N)<d(2 N) \tag{30}
\end{equation*}
$$

for all values of N. It follows from (29) and (30) that, if N is highly composite, then there is at least one highly composite number M such that $N<M \leq 2 N$. That is to say, there is at least one highly composite number N, such that

$$
\begin{equation*}
x<N \leq 2 x \tag{31}
\end{equation*}
$$

if $x \geq 1$.
7. I do not know of any method for determining consecutive highly composite numbers except by trial. The following table gives the consecutive highly composite values of N, and the corresponding values of $d(N)$ and $d d(N)$, up to $d(N)=10080$.
The numbers marked with the asterisk in the table are called superior highly composite numbers. Their definition and properties will be found in $\S \S 32,33$.

$d d(N)$	$d(N)$	N	
($2=2$	*2 $=$	2
2	$3=3$	$4=$	2^{2}
3	$4=2^{2}$	*6	$2 \cdot 3$
4	$6=2 \cdot 3$	*12 =	$2^{2} \cdot 3$
4	$8=2^{3}$	$24=$	$2^{3} \cdot 3$
3	$9=3^{2}$	$36=$	$2^{2} \cdot 3^{2}$
4	$10=2 \cdot 5$	$48=$	$2^{4} \cdot 3$
6	$12=2^{2} \cdot 3$	*60	$2^{2} \cdot 3 \cdot 5$
5	$16=2^{4}$	*120 =	$2^{3} \cdot 3 \cdot 5$
6	$18=2 \cdot 3^{2}$	$180=$	$2^{2} \cdot 3^{2} \cdot 5$
6	$20=2^{2} \cdot 5$	240	$2^{4} \cdot 3 \cdot 5$
8	$24=2^{3} \cdot 3$	*360 =	$2^{3} \cdot 3^{2} \cdot 5$
8	$30=2 \cdot 3 \cdot 5$	$720=$	$2^{4} \cdot 3^{2} \cdot 5$
6	$32=2^{5}$	840	$2^{3} \cdot 3 \cdot 5 \cdot 7$
9	$36=2^{2} \cdot 3^{2}$	$1260=$	$2^{2} \cdot 3^{2} \cdot 5 \cdot 7$
8	$40=2^{3} \cdot 5$	$1680=$	$2^{4} \cdot 3 \cdot 5 \cdot 7$
10	$48=2^{4} \cdot 3$	*2520	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$
12	$60=2^{2} \cdot 3 \cdot 5$	*5040 =	$2^{4} \cdot 3^{2} \cdot 5 \cdot 7$
7	$64=2^{6}$	7560	$2^{3} \cdot 3^{3} \cdot 5 \cdot 7$
12	$72=2^{3} \cdot 3^{2}$	$10080=$	$2^{5} \cdot 3^{2} \cdot 5 \cdot 7$
10	$80=2^{4} \cdot 5$	$15120=$	$2^{4} \cdot 3^{3} \cdot 5 \cdot 7$
12	$84=2^{2} \cdot 3 \cdot 7$	$20160=$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$
12	$90=2 \cdot 3^{2} \cdot 5$	$25200=$	$2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7$

$d d(N)$	$d(N)$	N
12	$96=2^{5} \cdot 3$	$27720=2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$
9	$100=2^{2} \cdot 5^{2}$	$45360=2^{4} \cdot 3^{4} \cdot 5 \cdot 7$
12	$108=2^{2} \cdot 3^{3}$	$50400=2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7$
16	$120=2^{3} \cdot 3 \cdot 5$	${ }^{5} 5440=2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$
8	$128=2^{7}$	$83160=2^{3} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11$
15	$144=2^{4} \cdot 3^{2}$	$110880=2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$
12	$160=2^{5} \cdot 5$	$166320=2^{4} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11$
16	$168=2^{3} \cdot 3 \cdot 7$	$221760=2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$
18	$180=2^{2} \cdot 3^{2} \cdot 5$	$277200=2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11$
14	$192=2^{6} \cdot 3$	$332640=2^{5} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11$
12	$200=2^{3} \cdot 5^{2}$	$498960=2^{4} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 11$
16	$216=2^{3} \cdot 3^{3}$	$554400=2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11$
12	$224=2^{5} \cdot 7$	$665280=2^{6} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11$
20	$240=2^{4} \cdot 3 \cdot 5$	*720720 $=2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13$
9	$256=2^{8}$	$1081080=2^{3} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13$
18	$288=2^{5} \cdot 3^{2}$	*1441440 $=2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13$
14	$320=2^{6} \cdot 5$	$2162160=2^{4} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13$
20	$336=2^{4} \cdot 3 \cdot 7$	$2882880=2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13$
24	$360=2^{3} \cdot 3^{2} \cdot 5$	$3603600=2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$
16	$384=2^{7} \cdot 3$	${ }^{*} 4324320=2^{5} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13$
15	$400=2^{4} \cdot 5^{2}$	$6486480=2^{4} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13$
20	$432=2^{4} \cdot 3^{3}$	$7207200=2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$
14	$448=2^{6} \cdot 7$	$8648640=2^{6} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13$
24	$480=2^{5} \cdot 3 \cdot 5$	$10810800=2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$
24	$504=2^{3} \cdot 3^{2} \cdot 7$	$14414400=2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$
10	$512=2^{9}$	$17297280=2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13$
21	$576=2^{6} \cdot 3^{2}$	*21621600 $=2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$
24	$600=2^{3} \cdot 3 \cdot 5^{2}$	$32432400=2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$
16	$640=2^{7} \cdot 5$	$36756720=2^{4} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17$
24	$672=2^{5} \cdot 3 \cdot 7$	$43243200=2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$
30	$720=2^{4} \cdot 3^{2} \cdot 5$	$61261200=2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17$
18	$768=2^{8} \cdot 3$	$73513440=2^{5} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17$
18	$800=2^{5} \cdot 5^{2}$	$110270160=2^{4} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17$
24	$864=2^{5} \cdot 3^{3}$	$122522400=2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17$
16	$896=2^{7} \cdot 7$	$147026880=2^{6} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17$
28	$960=2^{6} \cdot 3 \cdot 5$	$183783600=2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17$
30	$1008=2^{4} \cdot 3^{2} \cdot 7$	$245044800=2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17$
11	$1024=2^{10}$	$294053760=2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17$
24	$1152=2^{7} \cdot 3^{2}$	$* 367567200=2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17$
30	$1200=2^{4} \cdot 3 \cdot 5^{2}$	$551350800=2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17$

$d d(N)$	$d(N)$	N
18	$1280=2^{8} \cdot 5$	$698377680=2^{4} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
28	$1344=2^{6} \cdot 3 \cdot 7$	$735134400=2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17$
36	$1440=2^{5} \cdot 3^{2} \cdot 5$	$1102701600=2^{5} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17$
20	$1536=2^{9} \cdot 3$	$1396755360=2^{5} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
21	$1600=2^{6} \cdot 5^{2}$	$2095133040=2^{4} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
40	$1680=2^{4} \cdot 3 \cdot 5 \cdot 7$	$2205403200=2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17$
28	$1728=2^{6} \cdot 3^{3}$	$2327925600=2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
18	$1792=2^{8} \cdot 7$	$2793510720=2^{6} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
32	$1920=2^{7} \cdot 3 \cdot 5$	$3491888400=2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
36	$2016=2^{5} \cdot 3^{2} \cdot 7$	$4655851200=2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
12	$2048=2^{11}$	$5587021440=2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
27	$2304=2^{8} \cdot 3^{2}$	$* 6983776800=2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
36	$2400=2^{5} \cdot 3 \cdot 5^{2}$	$10475665200=2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
32	$2688=2^{7} \cdot 3 \cdot 7$	*13967553600 $=2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
42	$2880=2^{6} \cdot 3^{2} \cdot 5$	$20951330400=2^{5} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
22	$3072=2^{10} \cdot 3$	$27935107200=2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
48	$3360=2^{5} \cdot 3 \cdot 5 \cdot 7$	$41902660800=2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19$
32	$3456=2^{7} \cdot 3^{3}$	$48886437600=2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$
20	$3584=2^{9} \cdot 7$	$64250746560=2^{6} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
45	$3600=2^{4} \cdot 3^{2} \cdot 5^{2}$	$73329656400=2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$
36	$3840=2^{8} \cdot 3 \cdot 5$	$80313433200=2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
42	$4032=2^{6} \cdot 3^{2} \cdot 7$	$97772875200=2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$
13	$4096=2^{12}$	$128501483120=2^{7} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
48	$4320=2^{5} \cdot 3^{3} \cdot 5$	$146659312800=2^{5} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$
30	$4608=2^{9} \cdot 3^{2}$	$160626866400=2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
42	$4800=2^{6} \cdot 3 \cdot 5^{2}$	$240940299600=2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
60	$5040=7 \cdot 5 \cdot 3^{2} \cdot 2^{4}$	$293318625600=2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$
36	$5376=2^{8} \cdot 3 \cdot 7$	${ }^{*} 321253732800=2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
48	$5760=2^{7} \cdot 3^{2} \cdot 5$	$481880599200=2^{5} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
24	$6144=2^{11} \cdot 3$	$642507465600=2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
56	$6720=2^{6} \cdot 3 \cdot 5 \cdot 7$	$963761198400=2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
36	$6912=2^{8} \cdot 3^{3}$	$1124388064800=2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
22	$7168=2^{10} \cdot 7$	$1606268664000=2^{6} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
54	$7200=2^{5} \cdot 3^{2} \cdot 5^{2}$	$1686582097200=2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
40	$7680=2^{9} \cdot 3 \cdot 5$	$1927522396800=2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
48	$8064=2^{7} \cdot 3^{2} \cdot 7$	$* 2248776129600=2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
14	$8192=2^{13}$	$3212537328000=2^{7} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
56	$8640=2^{6} \cdot 3^{3} \cdot 5$	$3373164194400=2^{5} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
33	$9216=2^{10} \cdot 3^{2}$	$4497552259200=2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$
72	$10080=2^{5} \cdot 3^{2} \cdot 5 \cdot 7$	$6746328388800=2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23$

8. Now let us consider what must be the nature of N in order that N should be a highly composite number. In the first place it must be of the form

$$
2^{a_{2}} \cdot 3^{a_{3}} \cdot 5^{a_{5}} \cdot 7^{a_{7}} \cdots p_{1}^{a_{p_{1}}}
$$

where

$$
\begin{equation*}
a_{2} \geq a_{3} \geq a_{5} \geq \cdots \geq a_{p_{1}} \geq 1 . \tag{32}
\end{equation*}
$$

This follows at once from the fact that

$$
d\left(\varpi_{2}^{a_{2}} \varpi_{3}^{a_{3}} \varpi_{5}^{a_{5}} \cdots \varpi_{p_{1}}^{a_{p_{1}}}\right)=d\left(2^{a_{2}} \cdot 3^{a_{3}} \cdot 5^{a_{5}} \cdots p_{1}^{a_{p_{1}}}\right),
$$

for all prime values of $\varpi_{2}, \varpi_{3}, \varpi_{5}, \ldots, \varpi_{p_{1}}$.
It follows from the definition that, if N is highly composite and $N^{\prime}<N$, then $d\left(N^{\prime}\right)$ must be less that $d(N)$. For example, $\frac{5}{6} N<N$, and so $d\left(\frac{5}{6} N\right)<d(N)$. Hence

$$
\left(1+\frac{1}{a_{2}}\right)\left(1+\frac{1}{a_{3}}\right)>\left(1+\frac{1}{1+a_{5}}\right),
$$

provided that N is a multiple of 3 .
It is convenient to write

$$
\begin{equation*}
a_{\lambda}=0 \quad\left(\lambda>p_{1}\right) . \tag{33}
\end{equation*}
$$

Thus if N is not a multiple of 5 then a_{5} should be considered as 0 .
Again, $a_{p_{1}}$ must be less than or equal to 2 for all values of p_{1}. For let P_{1} be the prime next above p_{1}. Then it can be shewn that $P_{1}<p_{1}^{2}$ for all values of p_{1}.*
Now, if $a_{p_{1}}$ is greater than 2 , let

$$
N^{\prime}=\frac{N P_{1}}{P_{1}^{2}} .
$$

Then N^{\prime} is an integer less than N, and so $d\left(N^{\prime}\right)<d(N)$. Hence

$$
\left(1+a_{p_{1}}\right)>2\left(a_{p_{1}}-1\right),
$$

or

$$
3>a_{p_{1}},
$$

[^5]which contradicts our hypothesis. Hence
\[

$$
\begin{equation*}
a_{p_{1}} \leq 2 \tag{34}
\end{equation*}
$$

\]

for all values of p_{1}.
Now let $p_{1}^{\prime \prime}, p_{1}^{\prime}, p_{1}, P_{1}, P_{1}^{\prime}$ be consecutive primes in ascending order. Then, if $p_{1} \geq 5, a_{p_{1}^{\prime \prime}}$ must be less than or equal to 4 . For, if this were not so, we could suppose that

$$
N^{\prime}=\frac{N P_{1}}{\left(p_{1}^{\prime \prime}\right)^{3}} .
$$

But it can easily be shewn that, if $p_{1} \geq 5$, then

$$
\left(p_{1}^{\prime \prime}\right)^{3}>P_{1} ;
$$

and so $N^{\prime}<N$ and $d\left(N^{\prime}\right)<d(N)$. Hence

$$
\begin{equation*}
\left(1+a_{p_{1}^{\prime \prime}}^{\prime}\right)>2\left(a_{p_{1}^{\prime \prime}}-2\right) \tag{35}
\end{equation*}
$$

But since $a_{p_{1}^{\prime \prime}} \geq 5$, it is evident that

$$
\left(1+a_{p_{1}^{\prime \prime}}\right) \leq 2\left(a_{p_{1}^{\prime \prime}}-2\right),
$$

which contradicts (35); therefore, if $p_{1} \geq 5$, then

$$
\begin{equation*}
a_{p_{1}^{\prime \prime}} \leq 4 . \tag{36}
\end{equation*}
$$

Now let

$$
N^{\prime}=\frac{N p_{1}^{\prime \prime} P_{1}}{p_{1}^{\prime} p_{1}}
$$

It is easy to verify that, if $5 \leq p_{1} \leq 19$, then

$$
p_{1}^{\prime} p_{1}>p_{1}^{\prime \prime} P_{1} ;
$$

and so $N^{\prime}<N$ and $d\left(N^{\prime}\right)<d(N)$. Hence

$$
\left(1+a_{p_{1}}\right)\left(1+a_{p_{1}^{\prime}}\right)\left(1+a_{p_{1}^{\prime \prime}}\right)>2 a_{p_{1}} a_{p_{1}^{\prime}}\left(2+a_{p_{1}^{\prime \prime}}\right),
$$

or

$$
\left(1+\frac{1}{a_{p_{1}}}\right)\left(1+\frac{1}{a_{p_{1}^{\prime}}^{\prime}}\right)>2\left(1+\frac{1}{1+a_{p_{1}^{\prime \prime}}}\right)
$$

But from (36) we know that $1+a_{p_{1}^{\prime \prime}} \leq 5$. Hence

$$
\begin{equation*}
\left(1+\frac{1}{a_{p_{1}}}\right)\left(1+\frac{1}{a_{p_{1}^{\prime}}}\right)>2 \frac{2}{5} . \tag{37}
\end{equation*}
$$

From this it follows that $a_{p_{1}}=1$. For, if $a_{p_{1}} \geq 2$, then

$$
\left(1+\frac{1}{a_{p_{1}}}\right)\left(1+\frac{1}{a_{p_{1}^{\prime}}}\right) \leq 2 \frac{1}{4},
$$

in virtue of (32). This contradicts (37). Hence, if $5 \leq p_{1} \leq 19$, then

$$
\begin{equation*}
a_{p_{1}}=1 . \tag{38}
\end{equation*}
$$

Next let

$$
N^{\prime}=N P_{1} P_{1}^{\prime} /\left(p_{1} p_{1}^{\prime} p_{1}^{\prime \prime}\right)
$$

It can easily be shewn that, if $p_{1} \geq 11$, then

$$
P_{1} P_{1}^{\prime}<p_{1} p_{1}^{\prime} p_{1}^{\prime \prime} ;
$$

and so $N^{\prime}<N$ and $d\left(N^{\prime}\right)<d(N)$. Hence

$$
\left(1+a_{p_{1}}\right)\left(1+a_{p_{1}^{\prime}}\right)\left(1+a_{p_{1}^{\prime \prime}}\right)>4 a_{p_{1}} a_{p_{1}^{\prime}} a_{p_{1}^{\prime \prime}}^{\prime},
$$

or

$$
\begin{equation*}
\left(1+\frac{1}{a_{p_{1}}}\right)\left(1+\frac{1}{a_{p_{1}^{\prime}}}\right)\left(1+\frac{1}{a_{p_{1}^{\prime \prime}}}\right)>4 . \tag{39}
\end{equation*}
$$

From this we infer that $a_{p_{1}}$ must be 1. For, if $a_{p_{1}} \geq 2$, it follows from (32) that

$$
\left(1+\frac{1}{a_{p_{1}}}\right)\left(1+\frac{1}{a_{p_{1}^{\prime}}^{\prime}}\right)\left(1+\frac{1}{a_{p_{1}^{\prime \prime}}}\right) \leq 3 \frac{3}{8}
$$

which contradicts (39). Hence we see that, if $p_{1} \geq 11$, then

$$
\begin{equation*}
a_{p_{1}}=1 . \tag{40}
\end{equation*}
$$

It follows from (38) and (40) that, if $p_{1} \geq 5$, then

$$
\begin{equation*}
a_{p_{1}}=1 . \tag{41}
\end{equation*}
$$

But if $p_{1}=2$ or 3 , then from (34) it is clear that

$$
\begin{equation*}
a_{p_{1}}=1 \text { or } 2 . \tag{42}
\end{equation*}
$$

It follows that $a_{p_{1}}=1$ for all highly composite numbers, except for 2^{2}, and perhaps for certain numbers of the form $2^{a} \cdot 3^{2}$. In the latter case $a \geq 2$. It is easy to shew that, if $a \geq 3,2^{a} .3^{2}$ cannot be highly composite. For if we suppose that

$$
N^{\prime}=2^{a-1} \cdot 3 \cdot 5,
$$

then it is evident that $N^{\prime}<N$ and $d\left(N^{\prime}\right)<d(N)$, and so

$$
3(1+a)>4 a
$$

or

$$
a<3 .
$$

Hence it is clear that a cannot have any other value except 2 . Moreover we can see by actual trial that 2^{2} and $2^{2} \cdot 3^{2}$ are highly composite. Hence

$$
\begin{equation*}
a_{p_{1}}=1 \tag{43}
\end{equation*}
$$

for all highly composite values of N save 4 and 36 , when

$$
a_{p_{1}}=2 .
$$

Hereafter when we use this result it is to be understood that 4 and 36 are exceptions.
9. It follows from (32) and (43) that N must be of the form

$$
\begin{array}{cc}
& 2 \cdot 3 \cdot 5 \cdot 7 \cdots p_{1} \\
\times \quad & 2 \cdot 3 \cdot 5 \cdot 7 \cdots p_{2} \\
\times & 2 \cdot 3 \cdot 5 \cdots p_{3} \\
\times \quad \cdots \tag{44}
\end{array}
$$

where $p_{1}>p_{2} \geq p_{3} \geq p_{4} \geq \cdots$ and the number of rows is a_{2}.
Let P_{r} be the prime next above p_{r}, so that

$$
\begin{equation*}
\log P_{r}=\log p_{r}+O(1) \tag{45}
\end{equation*}
$$

in virtue of Bertrand's Postulate. Then it is evident that

$$
\begin{equation*}
a_{p_{r}} \geq r, \quad a_{P_{r}} \leq r-1 ; \tag{46}
\end{equation*}
$$

and so

$$
\begin{equation*}
a_{P_{r}} \leq a_{p_{r}}-1 . \tag{47}
\end{equation*}
$$

It is to be understood that

$$
\begin{equation*}
a_{P_{1}}=0, \tag{48}
\end{equation*}
$$

in virtue of (33).
It is clear from the form of (44) that r can never exceed a_{2}, and that

$$
\begin{equation*}
p_{a_{\lambda}}=\lambda . \tag{49}
\end{equation*}
$$

10. Now let

$$
N^{\prime}=\frac{N}{\nu} \lambda^{[\log \nu / \log \lambda] *},
$$

where $\nu \leq p_{1}$ so that N^{\prime} is an integer. Then it is evident that $N^{\prime}<N$ and $d\left(N^{\prime}\right)<d(N)$, and so

$$
\left(1+a_{\nu}\right)\left(a+a_{\lambda}\right)>a_{\nu}\left(1+a_{\lambda}+\left[\frac{\log \nu}{\log \lambda}\right]\right)
$$

or

$$
\begin{equation*}
1+a_{\lambda}>a_{\nu}\left[\frac{\log \nu}{\log \lambda}\right] . \tag{50}
\end{equation*}
$$

Since the right-hand side vanishes when $\nu>p_{1}$, we see that (50) is true for all values of λ and $\nu{ }^{\dagger}$.
Again let

$$
N^{\prime}=N_{\mu \lambda}^{-1-[\log \mu / \log \lambda]},
$$

where $[\log \mu / \log \lambda]<a_{\lambda}$, so that N^{\prime} is an integer. Then it is evident that $N^{\prime}<N$ and $d\left(N^{\prime}\right)<d(N)$, and so

$$
\begin{equation*}
\left(1+a_{\mu}\right)\left(1+a_{\lambda}\right)>\left(2+a_{\mu}\right)\left(a_{\lambda}-\left[\frac{\log \mu}{\log \lambda}\right]\right) \tag{51}
\end{equation*}
$$

Since the right-hand side is less than or equal to 0 when

$$
a_{\lambda} \leq[\log \mu / \log \lambda],
$$

we see that (51) is true for all values of λ and μ. From (51) it evidently follows that

$$
\begin{equation*}
\left(1+a_{\lambda}\right)<\left(2+a_{\mu}\right)\left[\frac{\log (\lambda \mu)}{\log \lambda}\right] . \tag{52}
\end{equation*}
$$

From (50) and (52) it is clear that

$$
\begin{equation*}
a_{\nu}\left[\frac{\log \nu}{\log \lambda}\right] \leq a_{\lambda} \leq a_{\mu}+\left(2+a_{\mu}\right)\left[\frac{\log \mu}{\log \lambda}\right] \tag{53}
\end{equation*}
$$

for all values of λ, μ and ν.
Now let us suppose that $\nu=p_{1}$ and $\mu=P_{1}$, so that $a_{\nu}=1$ and $a_{\mu}=0$. Then we see that

$$
\begin{equation*}
\left[\frac{\log p_{1}}{\log \lambda}\right] \leq a_{\lambda} \leq 2\left[\frac{\log P_{1}}{\log \lambda}\right] \tag{54}
\end{equation*}
$$

for all values of λ. Thus, for example, we have

$$
p_{1}=3, \quad 1 \leq a_{2} \leq 4 ;
$$

[^6]\[

$$
\begin{aligned}
p_{1}=5, & 2 \leq a_{2} \leq 4 ; \\
p_{1}=7, & 2 \leq a_{2} \leq 6 \\
p_{1}=11, & 3 \leq a_{2} \leq 6
\end{aligned}
$$
\]

and so on. It follows from (54) that, if $\lambda \leq p_{1}$, then

$$
\begin{equation*}
a_{\lambda} \log \lambda=O\left(\log p_{1}\right), \quad a_{\lambda} \log \lambda \neq o\left(\log p_{1}\right) . \tag{55}
\end{equation*}
$$

11. Again let

$$
N^{\prime}=N_{\lambda}^{\left[\sqrt{\left\{\left(1+a_{\lambda}+a_{\mu}\right) \log \mu / \log \lambda\right\}}\right]} \mu^{-1-\left[\sqrt{\left\{\left(1+a_{\lambda}+a_{\mu}\right) \log \lambda / \log \mu\right\}}\right]}
$$

and let us assume for the moment that

$$
a_{\mu}>\sqrt{\left\{\left(1+a_{\lambda}+a_{\mu}\right) \log \lambda / \log \mu\right\}},
$$

in order that N^{\prime} may be an integer. Then $N^{\prime}<N$ and $d\left(N^{\prime}\right)<d(N)$, and so

$$
\begin{align*}
&\left(1+a_{\lambda}\right)\left(1+a_{\mu}\right)>\quad\left\{1+a_{\lambda}+\left[\sqrt{\left\{\left(1+a_{\lambda}+a_{\mu}\right) \log \mu / \log \lambda\right\}}\right]\right\} \\
& \times\left\{a_{\mu}-\left[\sqrt{\left\{\left(1+a_{\lambda}+a_{\mu}\right) \log \lambda / \log \mu\right\}}\right]\right\} \\
&>\quad\left\{a_{\lambda}+\sqrt{\left\{\left(1+a_{\lambda}+a_{\mu}\right) \log \mu / \log \lambda\right\}}\right\} \\
& \times\left\{a_{\mu}-\sqrt{\left\{\left(1+a_{\lambda}+a_{\mu}\right) \log \lambda / \log \mu\right\}}\right\} . \tag{56}
\end{align*}
$$

It is evident that the right-hand side of (56) becomes negative when

$$
a_{\mu}<\sqrt{\left\{\left(1+a_{\lambda}+a_{\mu}\right) \log \lambda / \log \mu\right\}},
$$

while the left-hand side remains positive, and so the result is still true. Hence

$$
\begin{equation*}
a_{\mu} \log \mu-a_{\lambda} \log \lambda<2 \sqrt{\left\{\left(1+a_{\lambda}+a_{\mu}\right) \log \lambda \log \mu\right\}} \tag{57}
\end{equation*}
$$

for all values of λ and μ. Interchanging λ and μ in (57), we obtain

$$
\begin{equation*}
a_{\lambda} \log \lambda-a_{\mu} \log \mu<2 \sqrt{\left\{\left(1+a_{\lambda}+a_{\mu}\right) \log \lambda \log \mu\right\}} . \tag{58}
\end{equation*}
$$

From (57) and (58) it evidently follows that

$$
\begin{equation*}
\left|a_{\lambda} \log \lambda-a_{\mu} \log \mu\right|<2 \sqrt{\left\{\left(1+a_{\lambda}+a_{\mu}\right) \log \lambda \log \mu\right\}} \tag{59}
\end{equation*}
$$

for all values of λ and μ. It follows from this and (55) that, if λ and μ are neither greater than p_{1}, then

$$
\begin{equation*}
a_{\lambda} \log \lambda-a_{\mu} \log \mu=O \sqrt{\left\{\log p_{1} \log (\lambda \mu)\right\}} \tag{60}
\end{equation*}
$$

and so that, if $\log \lambda=o\left(\log p_{1}\right)$, then

$$
\begin{equation*}
a_{2} \log 2 \sim a_{3} \log 3 \sim a_{5} \log 5 \sim \cdots \sim a_{\lambda} \log \lambda \tag{61}
\end{equation*}
$$

12. It can easily be shewn by elementary algebra that, if x, y, m and n are not negative, and if

$$
|x-y|<2 \sqrt{(m x+n y+m n)}
$$

then

$$
\left.\begin{array}{l}
|\sqrt{(x+n)}-\sqrt{(y+m)}|<\sqrt{(m+n)} ; \tag{62}\\
|\sqrt{(x+n)}-\sqrt{(m+n)}|<\sqrt{(y+m)}
\end{array}\right\}
$$

From (62) and (59) it follows that

$$
\begin{equation*}
\left|\sqrt{\left\{\left(1+a_{\lambda}\right) \log \lambda\right\}}-\sqrt{\left\{\left(1+a_{\mu}\right) \log \mu\right\}}\right|<\sqrt{\{\log (\lambda \mu)\}} \tag{63}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sqrt{\left\{\left(1+a_{\lambda}\right) \log \lambda\right\}}-\sqrt{\{\log (\lambda \mu)\}}\right|<\sqrt{\left\{\left(1+a_{\mu}\right) \log \mu\right\}} \tag{64}
\end{equation*}
$$

for all values of λ and μ. If, in particular, we put $\mu=2$ in (63), we obtain

$$
\begin{align*}
\sqrt{\left\{\left(1+a_{2}\right) \log 2\right\}}-\sqrt{\{\log (2 \lambda)\}} & <\sqrt{\left\{\left(1+a_{\lambda}\right) \log \lambda\right\}} \\
& <\sqrt{\left\{\left(1+a_{2}\right) \log 2\right\}}+\sqrt{\{\log (2 \lambda)\}} \tag{65}
\end{align*}
$$

for all values of λ. Again, from (63), we have

$$
\left(1+a_{\lambda}\right) \log \lambda<\left(\sqrt{\left\{\left(1+a_{\nu}\right) \log \nu\right\}}+\sqrt{\{\log (\lambda \nu)\}}\right)^{2},
$$

or

$$
\begin{equation*}
a_{\lambda} \log \lambda<\left(1+a_{\nu}\right) \log \nu+\log \nu+2 \sqrt{\left\{\left(1+a_{\nu}\right) \log \nu \log (\lambda \nu)\right\}} . \tag{66}
\end{equation*}
$$

Now let us suppose that $\lambda \leq \mu$. Then, from (66), it follows that

$$
\begin{align*}
a_{\lambda} \log \lambda+\log \mu & <\left(1+a_{\nu}\right) \log \nu+\log (\mu \nu)+2 \sqrt{\left\{\left(1+a_{\nu}\right) \log \nu \log (\lambda \nu)\right\}} \\
& \leq\left(1+a_{\nu}\right) \log \nu+\log (\mu \nu)+2 \sqrt{\left\{\left(1+a_{\nu}\right) \log \nu \log (\mu \nu)\right\}} \\
& =\left\{\sqrt{\left\{\left(1+a_{\nu}\right) \log \nu\right\}}+\sqrt{\log (\mu \nu)}\right\}^{2}, \tag{67}
\end{align*}
$$

with the condition that $\lambda \leq \mu$. Similarly we can shew that

$$
a_{\lambda} \log \lambda+\log \mu>\left\{\sqrt{\left\{\left(1+a_{\nu}\right) \log \nu\right\}}-\sqrt{\log (\mu \nu)}\right\}^{2},
$$

with the condition that $\lambda \leq \mu$.
13. Now let

$$
N^{\prime}=\frac{N}{\lambda} 2^{[\log \lambda /\{\pi(\mu) \log 2\}]} 3^{[\log \lambda /\{\pi(\mu) \log 3\}]} \cdots \mu^{[\log \lambda /\{\pi(\mu) \log \mu\}]}
$$

where $\pi(\mu) \log \mu<\log \lambda \leq \log p_{1}$. Then it is evident that N^{\prime} is an integer less than N, and so $d\left(N^{\prime}\right)<d(N)$. Hence

$$
\begin{aligned}
(1+ & \left.\frac{1}{a_{\lambda}}\right)\left(1+a_{2}\right)\left(1+a_{3}\right)\left(1+a_{5}\right) \cdots\left(1+a_{\mu}\right) \\
& >\left\{a_{2}+\frac{\log \lambda}{\pi(\mu) \log 2}\right\}\left\{a_{3}+\frac{\log \lambda}{\pi(\mu) \log 3}\right\} \cdots\left\{a_{\mu}+\frac{\log \lambda}{\mu(\mu) \log \mu}\right\}
\end{aligned}
$$

that is

$$
\begin{aligned}
& \left\{a_{2} \log 2+\frac{\log \lambda}{\pi(\mu)}\right\}\left\{a_{3} \log 3+\frac{\log \lambda}{\pi(\mu)}\right\} \cdots\left\{a_{\mu} \log \mu+\frac{\log \lambda}{\pi(\mu)}\right\} \\
& \quad<\left(1+\frac{1}{a_{\lambda}}\right)\left(a_{2} \log 2+\log 2\right)\left(a_{3} \log 3+\log 3\right) \cdots\left(a_{\mu} \log \mu+\log \mu\right) \\
& \quad \leq\left(1+\frac{1}{a_{\lambda}}\right)\left(a_{2} \log 2+\log \mu\right)\left(a_{3} \log 3+\log \mu\right) \cdots\left(a_{\mu} \log \mu+\log \mu\right) .
\end{aligned}
$$

In other words

$$
\begin{align*}
(1+ & \left.\frac{1}{a_{\lambda}}\right) \\
& >\left\{1+\frac{\frac{\log \lambda}{\pi(\mu)}-\log \mu}{a_{2} \log 2+\log \mu}\right\}\left\{1+\frac{\frac{\log \lambda}{\pi(\mu)}-\log \mu}{a_{3} \log 3+\log \mu}\right\} \cdots\left\{1+\frac{\frac{\log \lambda}{\pi(\mu)}-\log \mu}{a_{\mu} \log \mu+\log \mu}\right\} \\
& >\left\{1+\frac{\frac{\log \lambda}{\pi(\mu)}-\log \mu}{\left\{\sqrt{\left\{\left(1+a_{\nu}\right) \log \nu\right\}}+\sqrt{\log (\mu \nu)}\right\}^{2}}\right\}^{\pi(\mu)} \tag{68}
\end{align*}
$$

w here ν is any prime, in virtue of (67). From (68) it follows that

$$
\begin{equation*}
\sqrt{\left\{\left(1+a_{\nu}\right) \log \nu\right\}}+\sqrt{\log (\mu \nu)}>\sqrt{\left\{\frac{\frac{\log \lambda}{\pi(\mu)}-\log \mu}{\left(1+\frac{1}{a_{\lambda}}\right)^{1 / \pi(\mu)}-1}\right\}} \tag{69}
\end{equation*}
$$

provided that $\pi(\mu) \log \mu<\log \lambda \leq \log p_{1}$.
14. Again let

$$
N^{\prime}=N \lambda 2^{-1-[\log \lambda /\{\pi(\mu) \log 2\}]} 3^{-1-[\log \lambda /\{\pi(\mu) \log 3\}]} \cdots \mu^{-1-[\log \lambda /\{\pi(\mu) \log \mu\}]},
$$

where $\mu \leq p_{1}$ and $\lambda>\mu$. Let us assume for the moment that

$$
a_{\kappa} \log \kappa>\frac{\log \lambda}{\pi(\mu)},
$$

for all values of κ less than or equal to μ, so that N^{\prime} is an integer. Then, by arguments similar to those of the previous section, we can shew that

$$
\begin{equation*}
\frac{1+a_{\lambda}}{2+a_{\lambda}}>\left\{1-\frac{\frac{\log \lambda}{\pi(\mu)}+\log \mu}{\left\{\sqrt{\left\{\left(1+a_{\nu}\right) \log \nu\right\}}-\sqrt{\log (\mu \nu)}\right\}^{2}}\right\}^{\pi(\mu)} \tag{70}
\end{equation*}
$$

From this it follows that

$$
\begin{equation*}
\left|\sqrt{\left\{\left(1+a_{\nu}\right) \log \nu\right\}}-\sqrt{\log (\mu \nu)}\right|<\sqrt{\left\{\frac{\frac{\log \lambda}{\pi(\mu)}+\log \mu}{1-\left(\frac{1+a_{\lambda}}{2+a_{\lambda}}\right)^{1 / \pi(\mu)}}\right\}} \tag{71}
\end{equation*}
$$

provided that $\mu \leq p_{1}$ and $\mu<\lambda$. The condition that

$$
a_{\kappa} \log \kappa>\{\log \lambda / \pi(\mu)\}
$$

is unnecessary because we know from (67^{\prime}) that

$$
\begin{equation*}
\left|\sqrt{\left\{\left(1+a_{\nu}\right) \log \nu\right\}}-\sqrt{\log (\mu \nu)}\right|<\sqrt{\left(a_{\kappa} \log \kappa+\log \mu\right)} \leq \sqrt{\left\{\frac{\log \lambda}{\pi(\mu)}+\log \mu\right\}} \tag{72}
\end{equation*}
$$

when

$$
a_{\kappa} \log \kappa \leq\{\log \lambda / \pi(\mu)\},
$$

and the last term in (72) is evidently less than the right-hand side of (71).
15. We shall consider in this and the following sections some important deductions from the preceding formulæ. Putting $\nu=2$ in (69) and (71), we obtain

$$
\begin{equation*}
\sqrt{\left\{\left(1+a_{2}\right) \log 2\right\}}>\sqrt{\left\{\frac{\frac{\log \lambda}{\pi(\mu)}-\log \mu}{\left(1+\frac{1}{a_{\lambda}}\right)^{1 / \pi(\mu)}-1}\right\}}-\sqrt{\log (2 \mu)}, \tag{73}
\end{equation*}
$$

provided that $\pi(\mu) \log \mu<\log \lambda \leq \log p_{1}$, and

$$
\begin{equation*}
\sqrt{\left\{\left(1+a_{2}\right) \log 2\right\}}<\sqrt{\left\{\frac{\frac{\log \lambda}{\pi(\mu)}+\log \mu}{1-\left(\frac{1+a_{\lambda}}{2+a_{\lambda}}\right)^{1 / \pi(\mu)}}\right\}}+\sqrt{\log (2 \mu)} \tag{74}
\end{equation*}
$$

provided that $\mu \leq p_{1}$, and $\mu<\lambda$. Now supposing that $\lambda=p_{1}$ in (73), and $\lambda=P_{1}$ in (74), we obtain

$$
\begin{equation*}
\sqrt{\left\{\left(1+a_{2}\right) \log 2\right\}}>\sqrt{\left\{\frac{\frac{\log p_{1}}{\pi(\mu)}-\log \mu}{2^{1 / \pi(\mu)}-1}\right\}}-\sqrt{\log (2 \mu)}, \tag{75}
\end{equation*}
$$

provided that $\pi(\mu) \log \mu<\log p_{1}$, and

$$
\begin{equation*}
\sqrt{\left\{\left(1+a_{2}\right) \log 2\right\}}<\sqrt{\left\{\frac{\frac{\log P_{1}}{\pi(\mu)}+\log \mu}{1-2^{-1 / \pi(\mu)}}\right\}}+\sqrt{\log (2 \mu)}, \tag{76}
\end{equation*}
$$

provided that $\mu \leq p_{1}$. In (75) and (76) μ can be so chosen as to obtain the best possible inequality for a_{2}. If p_{1} is too small, we may abandon this result in favour of

$$
\begin{equation*}
\left[\frac{\log p_{1}}{\log 2}\right] \leq a_{2} \leq 2\left[\frac{\log P_{1}}{\log 2}\right], \tag{77}
\end{equation*}
$$

which is obtained from (54) by putting $\lambda=2$.
After having obtained in this way what information we can about a_{2}, we may use (73) and (74) to obtain information about a_{λ}. Here also we have to choose μ so as to obtain the best possible inequality for a_{λ}. But if λ is too small we may, instead of this, use

$$
\begin{align*}
\sqrt{\left\{\left(1+a_{2}\right) \log 2\right\}}-\sqrt{\log (2 \lambda)} & <\sqrt{\left\{\left(1+a_{\lambda}\right) \log \lambda\right\}} \\
& <\sqrt{\left\{\left(1+a_{2}\right) \log 2\right\}}+\sqrt{\log (2 \lambda)} \tag{78}
\end{align*}
$$

which is obtained by putting $\mu=2$ in (63).
16. Now let us consider the order of a_{2}. From (73) it is evident that, if $\pi(\mu) \log \mu<\log \lambda \leq$ $\log p_{1}$, then

$$
\begin{equation*}
\left(1+a_{2}\right) \log 2+\log (2 \mu)+2 \sqrt{\left\{\left(1+a_{2}\right) \log 2 \log (2 \mu)\right\}}>\frac{\frac{\log \lambda}{\pi(\mu)}-\log \mu}{\left(1+\frac{1}{a_{\lambda}}\right)^{1 / \pi(\mu)}-1} \tag{79}
\end{equation*}
$$

But we know that for positive values of x,

$$
\frac{1}{e^{x}-1}=\frac{1}{x}+O(1), \frac{1}{e^{x}-1}=O\left(\frac{1}{x}\right) .
$$

Hence

$$
\frac{\log \lambda}{\pi(\mu)} \frac{1}{\left(1+\frac{1}{a_{\lambda}}\right)^{1 / \pi(\mu)}-1}=\frac{\log \lambda}{\pi(\mu)}\left\{\frac{\pi(\mu)}{\log \left(1+\frac{1}{a_{\lambda}}\right)}+O(1)\right\}
$$

Highly composite numbers

$$
=\frac{\log \lambda}{\log \left(1+\frac{1}{a_{\lambda}}\right)}+O\left\{\frac{\log \lambda}{\pi(\mu)}\right\}
$$

and

$$
\frac{\log \mu}{\left(1+\frac{1}{a_{\lambda}}\right)^{1 / \pi(\mu)}-1}=O\left\{\frac{\pi(\mu) \log \mu}{\log \left(1+\frac{1}{a_{\lambda}}\right)}\right\}=O\left(\mu a_{\lambda}\right) .
$$

Again from (55) we know that $a_{2}=O\left(\log p_{1}\right)$. Hence (79) may be written as

$$
\begin{align*}
& a_{2} \log 2+O \sqrt{\left(\log p_{1} \log \mu\right)+O(\log \mu)} \\
& \quad \geq \frac{\log \lambda}{\log \left(1+\frac{1}{a_{\lambda}}\right)}+O\left\{\frac{\log \lambda}{\pi(\mu)}\right\}+O\left(\mu a_{\lambda}\right) \tag{80}
\end{align*}
$$

But

$$
\begin{gathered}
\log \mu=O\left(\mu a_{\lambda}\right), \\
\mu a_{\lambda}=\frac{\mu}{\log \lambda} \cdot a_{\lambda} \log \lambda=O\left(\frac{\mu \log p_{1}}{\log \lambda}\right), \\
\frac{\log \lambda}{\pi(\mu)}=O\left\{\frac{\log \lambda \log \mu}{\mu}\right\} .
\end{gathered}
$$

Again

$$
\frac{\log \lambda \log \mu}{\mu}+\frac{\mu \log p_{1}}{\log \lambda}>2 \sqrt{\left(\log p_{1} \log \mu\right)}
$$

and so

$$
\sqrt{\left(\log p_{1} \log \mu\right)}=O\left(\frac{\log \lambda \log \mu}{\mu}+\frac{\mu \log p_{1}}{\log \lambda}\right) .
$$

Hence (80) may be replaced by

$$
\begin{equation*}
a_{2} \log 2 \geq \frac{\log \lambda}{\log \left(1+\frac{1}{a_{\lambda}}\right)}+O\left(\frac{\log \lambda \log \mu}{\mu}+\frac{\mu \log p_{1}}{\log \lambda}\right) \tag{81}
\end{equation*}
$$

provided that $\pi(\mu) \log \mu<\log \lambda \leq \log p_{1}$. Similarly, from (74), we can shew that

$$
\begin{equation*}
a_{2} \log 2 \leq \frac{\log \lambda}{\log \left(1+\frac{1}{1+a_{\lambda}}\right)}+O\left(\frac{\log \lambda \log \mu}{\mu}+\frac{\mu \log p_{1}}{\log \lambda}\right) \tag{82}
\end{equation*}
$$

provided that $\mu \leq p_{1}$ and $\mu<\lambda$. Now supposing that $\lambda=p_{1}$ in (81), and $\lambda=P_{1}$ in (82), and also that

$$
\mu=O \sqrt{\left(\log p_{1} \log \log p_{1}\right)}, \mu \neq o \sqrt{\left(\log p_{1} \log \log p_{1}\right)}, *
$$

[^7]we obtain
\[

\left.$$
\begin{array}{l}
a_{2} \log 2 \geq \frac{\log p_{1}}{\log 2}+O \sqrt{\left(\log p_{1} \log \log p_{1}\right)}, \\
a_{2} \log 2 \leq \frac{\log p_{1}}{\log 2}+O \sqrt{\left(\log p_{1} \log \log p_{1}\right)} . \tag{83}
\end{array}
$$\right\}
\]

From (83) it evidently follows that

$$
\begin{equation*}
a_{2} \log 2=\frac{\log p_{1}}{\log 2}+O \sqrt{\left(\log p_{1} \log \log p_{1}\right)} . \tag{84}
\end{equation*}
$$

And it follows from this and (60) that if $\lambda \leq p_{1}$ then

$$
\begin{equation*}
a_{\lambda} \log \lambda=\frac{\log p_{1}}{\log 2}+O\left\{\sqrt{\left.\log p_{1} \log \lambda\right)}+\sqrt{\left(\log p_{1} \log \log p_{1}\right)}\right\} . \tag{85}
\end{equation*}
$$

Hence, if $\log \lambda=o\left(\log p_{1}\right)$, we have

$$
\begin{equation*}
a_{2} \log 2 \sim a_{3} \log 3 \sim a_{5} \log 5 \sim \cdots \sim a_{\lambda} \log \lambda \sim \frac{\log p_{1}}{\log 2} \tag{86}
\end{equation*}
$$

17. The relations (86) give us information about the order of a_{λ} when λ is sufficiently small compared to p_{1}, in fact, when λ is of the form p_{1}^{ϵ}, where $\epsilon \rightarrow 0$. Such values of λ constitute but a small part of its total range of variation, and it is clear that further formulæ must be proved before we can gain an adequate idea of the general behaviour of a_{λ}. From (81), (82) and (84) it follows that

$$
\left.\begin{array}{l}
\frac{\log \lambda}{\log \left(1+\frac{1}{a_{\lambda}}\right)} \leq \frac{\log p_{1}}{\log 2}+O\left\{\frac{\log \lambda \log \mu}{\mu}+\frac{\mu \log p_{1}}{\log \lambda}+\sqrt{\left(\log p_{1} \log \log p_{1}\right)}\right\} \\
\frac{\log \lambda}{\log \left(1+\frac{1}{1+a_{\lambda}}\right)} \geq \frac{\log p_{1}}{\log 2}+O\left\{\frac{\log \lambda \log \mu}{\mu}+\frac{\mu \log p_{1}}{\log \lambda}+\sqrt{\left(\log p_{1} \log \log p_{1}\right)}\right\} \tag{87}
\end{array}\right\}
$$

provided that $\pi(\mu) \log \mu \log \lambda \leq \log p_{1}$. From this we can easily shew that if

$$
\pi(\mu) \log \mu \log \lambda \leq \log p_{1}
$$

then

$$
\left.\begin{array}{l}
a_{\lambda} \leq\left(2^{\log \lambda / \log p_{1}}-1\right)^{-1}+O\left\{\frac{\log \mu}{\mu}+\frac{\mu \log p_{1}}{(\log \lambda)^{2}}+\frac{\sqrt{\left(\log p_{1} \log \log p_{1}\right)}}{\log \lambda}\right\} \\
a_{\lambda} \geq\left(2^{\log \lambda / \log p_{1}}-1\right)^{-1}-1+O\left\{\frac{\log \mu}{\mu}+\frac{\mu \log p_{1}}{(\log \lambda)^{2}}+\frac{\sqrt{\left(\log p_{1} \log \log p_{1}\right)}}{\log \lambda}\right\} \tag{88}
\end{array}\right\}
$$

Now let us suppose that

$$
\log \lambda \neq o \sqrt{\left(\frac{\log p_{1}}{\log \log p_{1}}\right)}
$$

Then we can choose μ so that

$$
\begin{aligned}
& \mu=O\left\{\log \lambda \sqrt{\left(\frac{\log \log p_{1}}{\log p_{1}}\right)}\right\} \\
& \mu \neq o\left\{\log \lambda \sqrt{\left(\frac{\log \log p_{1}}{\log p_{1}}\right)}\right\}
\end{aligned}
$$

Now it is clear that $\log \mu=O\left(\log \log p_{1}\right)$, and so

$$
\frac{\log \mu}{\mu}=O\left(\frac{\log \log p_{1}}{\mu}\right)=O\left\{\frac{\sqrt{\left(\log p_{1} \log \log p_{1}\right)}}{\log \lambda}\right\}
$$

and

$$
\frac{\mu \log p_{1}}{(\log \lambda)^{2}}=O\left\{\frac{\sqrt{\left(\log p_{1} \log \log p_{1}\right)}}{\log \lambda}\right\}
$$

From this and (88) it follows that, if

$$
\log \lambda \neq o \sqrt{\left(\frac{\log p_{1}}{\log \log p_{1}}\right)}
$$

then

$$
\begin{align*}
& a_{\lambda} \leq\left(2^{\log \lambda / \log p_{1}}-1\right)^{-1}+O\left\{\frac{\sqrt{\left(\log p_{1} \log \log p_{1}\right)}}{\log \lambda}\right\}, \\
& a_{\lambda} \geq\left(2^{\log \lambda / \log p_{1}}-1\right)^{-1}+O\left\{\frac{\sqrt{\left(\log p_{1} \log \log p_{1}\right)}}{\log \lambda}\right\} . \tag{89}
\end{align*}
$$

Now we shall divide that primes from 2 to p_{1} into five ranges thus

2
p_{1}

$$
\left(l p_{1}\right)^{\kappa} e\left\{\kappa(l p)^{\frac{1}{3}}\right\} e\left\{\kappa\left(\frac{l p}{l_{2} p}\right)^{\frac{1}{2}}\right\} e\left\{\kappa\left(l p l_{2} p\right)^{\frac{1}{2}}\right\}
$$

We shall use the inequalities (89) to specify the behavior of a_{λ} in ranges I and II, and the formula (85) in ranges IV and V. Range III we shall deal with differently, by a different choice of μ in the inequalities (88). We can easily see that each result in the following sections gives the most information in its particular range.

18. Range I:

$$
\log \lambda \neq O \sqrt{\left(\log p_{1} \log \log p_{1}\right)} . *
$$

Let

$$
\Lambda=\left[\left(2^{\log \lambda / \log p_{1}}-1\right)^{-1}\right]
$$

and let

$$
\left(2^{\log \lambda / \log p_{1}}-1\right)^{-1}+\epsilon_{\lambda},
$$

where $-\frac{1}{2}<\epsilon_{\lambda}<\frac{1}{2}$, be an integer, so that

$$
\begin{equation*}
\left(2^{\log \lambda / \log p_{1}}-1\right)^{-1}=\Lambda+1-\epsilon_{\lambda} \tag{90}
\end{equation*}
$$

when $\epsilon_{\lambda}>0$, and

$$
\begin{equation*}
\left(2^{\log \lambda / \log p_{1}}-1\right)^{-1}=\Lambda-\epsilon_{\lambda} \tag{91}
\end{equation*}
$$

when $\epsilon_{\lambda}<0$. By our supposition we have

$$
\begin{equation*}
\frac{\sqrt{\left(\log p_{1} \log \log p_{1}\right)}}{\log \lambda}=o(1) \tag{92}
\end{equation*}
$$

First let us consider the case in which

$$
\epsilon_{\lambda} \neq O\left\{\frac{\sqrt{\left(\log p_{1} \log \log p_{1}\right)}}{\log \lambda}\right\}
$$

so that

$$
\begin{equation*}
\frac{\sqrt{\left(\log p_{1} \log \log p_{1}\right)}}{\log \lambda}=o\left(\epsilon_{\lambda}\right) . \tag{93}
\end{equation*}
$$

It follows from (89), (90), and (93) that, if $\epsilon_{\lambda}>0$, then

$$
\left.\begin{array}{l}
a_{\lambda} \leq \Lambda+1-\epsilon_{\lambda}+o\left(\epsilon_{\lambda}\right), \tag{94}\\
a_{\lambda} \geq \Lambda-\epsilon_{\lambda}+o\left(\epsilon_{\lambda}\right) .
\end{array}\right\}
$$

[^8]Since $0<\epsilon_{\lambda}<\frac{1}{2}$, and a_{λ} and Λ are integers, it follows from (94) that

$$
\begin{equation*}
a_{\lambda} \leq \Lambda, \quad a_{\lambda}>\Lambda-1 \tag{95}
\end{equation*}
$$

Hence

$$
\begin{equation*}
a_{\lambda}=\Lambda . \tag{96}
\end{equation*}
$$

Similarly from (89) (91) and (93) we see that, if $\epsilon_{\lambda}<0$, then

$$
\left.\begin{array}{l}
a_{\lambda} \leq \Lambda-\epsilon_{\lambda}+o\left(\epsilon_{\lambda}\right), \tag{97}\\
a_{\lambda} \geq \Lambda-1-\epsilon_{\lambda}+o\left(\epsilon_{\lambda}\right) .
\end{array}\right\}
$$

Since $-\frac{1}{2}<\epsilon_{\lambda}<0$, it follows from (97) that the inequalities (95), and therefore the equation (96), still hold. Hence (96) holds whenever

$$
\begin{equation*}
\epsilon_{\lambda} \neq O\left\{\frac{\sqrt{\left(\log p_{1} \log \log p_{1}\right)}}{\log \lambda}\right\} \tag{98}
\end{equation*}
$$

In particular it holds whenever

$$
\begin{equation*}
\epsilon_{\lambda} \neq 0(1) \tag{99}
\end{equation*}
$$

Now let us consider the case in which

$$
\begin{equation*}
\epsilon_{\lambda}=0\left\{\frac{\sqrt{\left(\log p_{1} \log \log p_{1}\right)}}{\log \lambda}\right\} \tag{100}
\end{equation*}
$$

so that $\epsilon_{\lambda}=o(1)$, in virtue of (92). It follows from this and (89) and (90) that, if $\epsilon_{\lambda}>0$, then

$$
\left.\begin{array}{l}
a_{\lambda} \leq \Lambda+1+o(1) \tag{101}\\
a_{\lambda} \geq \Lambda+o(1)
\end{array}\right\}
$$

Hence

$$
a_{\lambda} \leq \Lambda+1, \quad a_{\lambda} \geq \Lambda ;
$$

and so

$$
\begin{equation*}
a_{\lambda}=\Lambda \quad \text { or } \quad \Lambda+1 . \tag{102}
\end{equation*}
$$

Similarly from (89), (91), and (100), we see that, if $\epsilon_{\lambda}<0$, then

$$
\left.\begin{array}{l}
a_{\lambda} \leq \Lambda+o(1) \tag{103}\\
a_{\lambda} \geq \Lambda-1+o(1)
\end{array}\right\}
$$

Hence

$$
a_{\lambda} \leq \Lambda, \quad a_{\lambda} \geq \Lambda-1 ;
$$

and so

$$
\begin{equation*}
a_{\lambda}=\Lambda \quad \text { or } \quad \Lambda-1 . \tag{104}
\end{equation*}
$$

For example, let us suppose that it is required to find a_{λ} when $\lambda \sim p_{1}^{\frac{1}{8}}$. We have

$$
\left(2^{\log \lambda / \log p_{1}}-1\right)^{-1}=\left(2^{1 / 8}-1\right)^{-1}+o(1)=11.048 \cdots+o(1) .
$$

It is evident that $\Lambda=11$ and $\epsilon_{\lambda} \neq o(1)$. Hence $a_{\lambda}=11$.
19. The results in the previous section may be rewritten with slight modifications, in order that the transition of a_{λ} from one value to another may be more clearly expressed. Let

$$
\begin{equation*}
\lambda=p_{1}^{\frac{\log (1+1 / x)}{\log 2}}, \tag{105}
\end{equation*}
$$

and let $x+\epsilon_{x}$, where $-\frac{1}{2}<\epsilon_{x}<\frac{1}{2}$, be an integer. Then the range of x which we are now considering is

$$
\begin{equation*}
x=o \sqrt{\left(\frac{\log p_{1}}{\log \log p_{1}}\right)} \tag{106}
\end{equation*}
$$

and the results of the previous section may be stated as follows. If

$$
\begin{equation*}
\epsilon_{x} \neq O\left\{x \sqrt{\left(\frac{\log \log p_{1}}{\log p_{1}}\right)}\right\} \tag{107}
\end{equation*}
$$

then

$$
\begin{equation*}
a_{\lambda}=[x] . \tag{108}
\end{equation*}
$$

As a particular case of this we have

$$
a_{\lambda}=[x],
$$

when $\epsilon_{x} \neq o(1)$. But if

$$
\begin{equation*}
\epsilon_{x}=O\left\{x \sqrt{\left(\frac{\log \log p_{1}}{\log p_{1}}\right)}\right\} \tag{109}
\end{equation*}
$$

then when $\epsilon_{x}>0$

$$
\begin{equation*}
a_{\lambda}=[x] \text { or }[x+1] ; \tag{110}
\end{equation*}
$$

and when $\epsilon_{x}<0$

$$
a_{\lambda}=[x] \text { or }[x-1] .
$$

20. Range II:

$$
\left.\begin{array}{l}
\log \lambda=O \sqrt{\left(\log p_{1} \log \log p_{1}\right)}, \\
\log \lambda \neq o \sqrt{\left(\frac{\log p_{1}}{\log \log p_{1}}\right)}
\end{array}\right\}
$$

From (89) it follows that

$$
\begin{equation*}
a_{\lambda}=\left(2^{\log \lambda / \log p_{1}}-1\right)^{-1}+O\left\{\frac{\sqrt{\left(\log p_{1} \log \log p_{1}\right)}}{\log \lambda}\right\} . \tag{111}
\end{equation*}
$$

But

$$
\left(2^{\log \lambda / \log p_{1}}-1\right)^{-1}=\frac{\log p_{1}}{\log 2 \log \lambda}+O(1)
$$

Hence

$$
\begin{equation*}
a_{\lambda} \log \lambda=\frac{\log p_{1}}{\log 2}+O \sqrt{\left(\log p_{1} \log \log p_{1}\right)} . \tag{112}
\end{equation*}
$$

As an example we may suppose that

$$
\lambda \sim e^{\sqrt{\left(\log p_{1}\right)}} .
$$

Then from (112) it follows that

$$
a_{\lambda}=\frac{\sqrt{\left(\log p_{1}\right)}}{\log 2}+O \sqrt{\left(\log \log p_{1}\right)} .
$$

21. Range III:

$$
\begin{aligned}
& \log \lambda=O \sqrt{\left(\frac{\log p_{1}}{\log \log p_{1}}\right)} \\
& \log \lambda \neq o\left(\log p_{1}\right)^{\frac{1}{3}}
\end{aligned}
$$

Let us suppose that $\mu=O(1)$ in (88). Then we see that

$$
\begin{equation*}
a_{\lambda}=\frac{\log p_{1}}{\log 2 \log \lambda}+O(1)+O\left\{\frac{\log \mu}{\mu}+\frac{\mu \log p_{1}}{(\log \lambda)^{2}}+\frac{\sqrt{\left(\log p_{1} \log \log p_{1}\right)}}{\log \lambda}\right\} \tag{113}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{\lambda} \log \lambda=\frac{\log p_{1}}{\log 2}+O\left\{\frac{\log \mu \log \lambda}{\mu}+\frac{\mu \log p_{1}}{\log \lambda}+\sqrt{\left(\log p_{1} \log \log p_{1}\right)}\right\} . \tag{114}
\end{equation*}
$$

Now

$$
\begin{gathered}
\frac{\log \mu \log \lambda}{\mu}=O(\log \lambda)=o\left(\frac{\log p_{1}}{\log \lambda}\right), \\
\frac{\mu \log p_{1}}{\log \lambda}=O\left(\frac{\log p_{1}}{\log \lambda}\right) \\
\sqrt{\left(\log p_{1} \log \log p_{1}\right)}=O\left(\frac{\log p_{1}}{\log \lambda}\right) .
\end{gathered}
$$

Hence

$$
\begin{equation*}
a_{\lambda} \log \lambda=\frac{\log p_{1}}{\log 2}+O\left(\frac{\log p_{1}}{\log \lambda}\right) . \tag{115}
\end{equation*}
$$

For example, when

$$
\lambda \sim e^{\left(\log p_{1}\right)^{\frac{3}{8}}}
$$

we have

$$
a_{\lambda}=\frac{\left(\log p_{1}\right)^{\frac{5}{8}}}{\log 2}+O\left(\log p_{1}\right)^{\frac{1}{4}} .
$$

22. Range IV:

$$
\left.\begin{array}{l}
\log \lambda=O\left(\log p_{1}\right)^{\frac{1}{3}} \\
\log \lambda \neq o\left(\log \log p_{1}\right)
\end{array}\right\}
$$

In this case it follows from (85) that

$$
\begin{equation*}
a_{\lambda} \log \lambda=\frac{\log p_{1}}{\log 2}+O \sqrt{\left(\log p_{1} \log \lambda\right)} \tag{116}
\end{equation*}
$$

As an example in this range, when we suppose that

$$
\lambda \sim e^{\left(\log p_{1}\right)^{\frac{1}{4}}}
$$

we obtain from (116)

$$
a_{\lambda}=\frac{\left(\log p_{1}\right)^{\frac{3}{4}}}{\log 2}+O\left(\log p_{1}\right)^{\frac{3}{8}} .
$$

23. Range V: $\log \lambda=O\left(\log \log p_{1}\right)$.

From (85) it follows that

$$
\begin{equation*}
a_{\lambda} \log \lambda=\frac{\log p_{1}}{\log 2}+O \sqrt{\left(\log p_{1} \log \log p_{1}\right)} . \tag{117}
\end{equation*}
$$

For example, we may suppose that

$$
\lambda \sim e^{\sqrt{\left(\log \log p_{1}\right)}}
$$

Then

$$
a_{\lambda}=\frac{\log p_{1}}{\log 2 \sqrt{\left(\log \log p_{1}\right)}}+O \sqrt{\left(\log p_{1}\right)}
$$

24. Let λ^{\prime} be the prime next below λ, so that $\lambda^{\prime} \leq \lambda-1$. Then it follows from (63) that

$$
\begin{equation*}
\sqrt{\left\{\left(1+a_{\lambda^{\prime}}\right) \log \lambda^{\prime}\right\}}-\sqrt{\left\{\left(1+a_{\lambda}\right) \log \lambda\right\}}>-\sqrt{\log \left(\lambda \lambda^{\prime}\right)} . \tag{118}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\sqrt{\left\{\left(1+a_{\lambda^{\prime}} \log (\lambda-1)\right\}\right.}-\sqrt{\left\{\left(1+a_{\lambda}\right) \log \lambda\right\}}>-\sqrt{\{2 \log \lambda\}} . \tag{119}
\end{equation*}
$$

But

$$
\log (\lambda-1)<\log \lambda-\frac{1}{\lambda}<\log \lambda\left(1-\frac{1}{2 \lambda \log \lambda}\right)^{2}
$$

and so (119) may be replaced by

$$
\begin{equation*}
\sqrt{\left(1+a_{\lambda^{\prime}}\right)}-\sqrt{\left(1+a_{\lambda}\right)}>\frac{\sqrt{\left(1+a_{\lambda^{\prime}}\right)}}{2 \lambda \log \lambda}-\sqrt{2} . \tag{120}
\end{equation*}
$$

But from (54) we know that

$$
1+a_{\lambda^{\prime}} \geq 1+\left[\frac{\log p_{1}}{\log \lambda^{\prime}}\right]>\frac{\log p_{1}}{\log \lambda^{\prime}}>\frac{\log p_{1}}{\log \lambda}
$$

From this and (120) it follows that

$$
\begin{equation*}
\sqrt{\left(1+a_{\lambda^{\prime}}\right)}-\sqrt{\left(1+a_{\lambda}\right)}>\frac{\sqrt{\left(\log p_{1}\right)}}{2 \lambda(\log \lambda)^{\frac{3}{2}}}-\sqrt{2} \tag{121}
\end{equation*}
$$

Now let us suppose that $\lambda^{2}(\log \lambda)^{3}<\frac{1}{8} \log p_{1}$. Then, from (121), we have

$$
\sqrt{\left(1+a_{\lambda^{\prime}}\right)}-\sqrt{\left(1+a_{\lambda}\right)}>0,
$$

or

$$
\begin{equation*}
a_{\lambda^{\prime}}>a_{\lambda} . \tag{122}
\end{equation*}
$$

From (122) it follows that, if $\lambda^{2}(\log \lambda)^{3}<\frac{1}{8} \log p_{1}$, then

$$
\begin{equation*}
a_{2}>a_{3}>a_{5}>a_{7}>\cdots>a_{\lambda} \tag{123}
\end{equation*}
$$

In other words, in a large highly composite number

$$
2^{a_{2}} \cdot 3^{a_{3}} \cdot 5^{a_{5}} \cdot 7^{a_{7}} \cdots p_{1}
$$

the indices comparatively near the beginning form a decreasing sequence in the strict sense which forbids equality. Later on groups of equal indices will in general occur.
To sum up, we have obtained fairly accurate information about a_{λ} for all possible values of λ. The range I is by far the most extensive, and throughout this range a_{λ} is known with an error never exceeding 1. The formulæ (86) hold throughout a range which includes all the remaining ranges II - V, and a considerable part of I as well, while we have obtained more precise formulæ for each individual range II-V.
25. Now let us consider the nature of p_{r}. It is evident that r cannot exceed a_{2}; i.e., r cannot exceed

$$
\begin{equation*}
\frac{\log p_{1}}{(\log 2)^{2}}+O \sqrt{\left(\log p_{1} \log \log p_{1}\right)} \tag{124}
\end{equation*}
$$

From (55) it evidently follows that

$$
\left.\begin{array}{r}
a_{p_{r}} \log p_{r}=O\left(\log p_{1}\right) \\
a_{p_{r}} \log p_{r} \neq o\left(\log p_{1}\right) ; \tag{126}
\end{array}\right\}
$$

But from (46) we know that

$$
\left.\begin{array}{l}
a_{p_{r}} \log p_{r} \geq r \log p_{r} \tag{127}\\
\left(1+a_{P_{r}}\right) \log p_{r} \leq r \log p_{r}
\end{array}\right\}
$$

From (125) - (127) it follows that

$$
\left.\begin{array}{l}
r \log p_{r}=O\left(\log p_{1}\right) \tag{128}\\
r \log p_{r} \neq o\left(\log p_{1}\right)
\end{array}\right\}
$$

and

$$
\left.\begin{array}{l}
a_{p_{r}}=O(r) \tag{129}\\
a_{p_{r}} \neq o(r)
\end{array}\right\}
$$

Highly composite numbers
26. Supposing that $\lambda=p_{r}$ in (81) and $\lambda=P_{r}$ in (82), and remembering (128), we see that, if $r \mu=o\left(\log p_{1}\right)$, then

$$
\begin{equation*}
\log \left(1+\frac{1}{a_{p_{r}}}\right) \geq \frac{\log p_{r}}{a_{2} \log 2}\left\{1+O\left(\frac{\log \mu}{r \mu}+\frac{r \mu}{\log p_{1}}\right)\right\}, \tag{130}
\end{equation*}
$$

and

$$
\begin{equation*}
\log \left(1+\frac{1}{a+a_{P_{r}}}\right) \leq \frac{\log P_{r}}{a_{2} \log 2}\left\{1+O\left(\frac{\log \mu}{r \mu}+\frac{r \mu}{\log p_{1}}\right)\right\} . \tag{131}
\end{equation*}
$$

But, from (47), we have

$$
\log \left(1+\frac{1}{a_{p_{r}}}\right) \leq \log \left(1+\frac{1}{1+a_{P_{r}}}\right) .
$$

Also we know that

$$
\log P_{r}=\log p_{r}+O(1)=\log p_{r}\left\{1+O\left(\frac{1}{\log p_{r}}\right)\right\}=\log p_{r}\left\{1+O\left(\frac{r}{\log p_{1}}\right)\right\} .
$$

Hence (131) may be replaced by

$$
\begin{equation*}
\log \left(1+\frac{1}{a_{p_{r}}}\right) \leq \frac{\log p_{r}}{a_{2} \log 2}\left\{1+O\left(\frac{\log \mu}{r \mu}+\frac{r \mu}{\log p_{1}}\right)\right\} . \tag{132}
\end{equation*}
$$

From (130) and (132) it is evident that

$$
\begin{equation*}
\log \left(1+\frac{1}{a_{p_{r}}}\right)=\frac{\log p_{r}}{a_{1} \log 2}\left\{1+O\left(\frac{\log \mu}{r \mu}+\frac{r \mu}{\log p_{1}}\right)\right\} . \tag{133}
\end{equation*}
$$

In a similar manner

$$
\begin{equation*}
\log \left(1+\frac{1}{1+a_{P_{r}}}\right)=\frac{\log p_{r}}{a_{2} \log 2}\left\{1+O\left(\frac{\log \mu}{r \mu}+\frac{r \mu}{\log p_{1}}\right)\right\} . \tag{134}
\end{equation*}
$$

Now supposing that

$$
\left.\begin{array}{l}
r \mu=o\left(\log p_{1}\right), \tag{135}\\
r \mu \neq O(\log \mu),
\end{array}\right\}
$$

and dividing (134) by (133), we have

$$
\frac{\log \left(1+\frac{1}{1+a_{P_{r}}}\right)}{\log \left(1+\frac{1}{a_{p_{r}}}\right)}=1+O\left(\frac{\log \mu}{r \mu}+\frac{r \mu}{\log p_{1}}\right)
$$

or

$$
1+\frac{1}{1+a_{P_{r}}}=1+\frac{1}{a_{p_{r}}}+O\left\{\left(\frac{\log \mu}{r \mu}+\frac{r \mu}{\log p_{1}}\right) / a_{p_{r}}\right\}
$$

that is

$$
\frac{1}{1+a_{P_{r}}}=\frac{1}{a_{p_{r}}}\left\{1+O\left(\frac{\log \mu}{r \mu}+\frac{r \mu}{\log p_{1}}\right)\right\}
$$

Hence

$$
\begin{equation*}
a_{p_{r}}=a_{P_{r}}+1+O\left(\frac{\log \mu}{\mu}+\frac{r^{2} \mu}{\log p_{1}}\right) \tag{136}
\end{equation*}
$$

in virtue of (129). But $a_{P_{r}} \leq r-1$, and so

$$
\begin{equation*}
a_{p_{r}} \leq r+O\left(\frac{\log \mu}{\mu}+\frac{r^{2} \mu}{\log p_{1}}\right) \tag{137}
\end{equation*}
$$

But we know that $a_{p_{r}} \geq r$. Hence it is clear that

$$
\begin{equation*}
a_{p_{r}}=r+O\left(\frac{\log \mu}{\mu}+\frac{r^{2} \mu}{\log p_{1}}\right) \tag{138}
\end{equation*}
$$

From this and (136) it follows that

$$
\begin{equation*}
a_{P_{r}}=r-1+O\left(\frac{\log \mu}{\mu}+\frac{r^{2} \mu}{\log p_{1}}\right) \tag{139}
\end{equation*}
$$

provided that the conditions (135) are satisfied.
Now let us suppose that $r=o \sqrt{\left(\log p_{1}\right)}$. Then we can choose μ such that $r^{2} \mu=o\left(\log p_{1}\right)$ and $\mu \neq O(1)$. Consequently we have

$$
\frac{\log \mu}{\mu}=o(1), \quad \frac{r^{2} \mu}{\log p_{1}}=o(1)
$$

and so it follows from (138) and (139) that

$$
\begin{equation*}
a_{p_{r}}=1+a_{P_{r}}=r \tag{140}
\end{equation*}
$$

provided that $r=o \sqrt{\left(\log p_{1}\right)}$. From this it is clear that, if $r=o \sqrt{\left(\log p_{1}\right)}$, then

$$
\begin{equation*}
p_{1}>p_{2}>p_{3}>p_{4}>\cdots>p_{r} \tag{141}
\end{equation*}
$$

In other words, in a large highly composite number

$$
2^{a_{2}} \cdot 3^{a_{3}} \cdot 5^{a_{5}} \cdots p_{1}
$$

the indices comparatively near the end form a sequence of the type

$$
\ldots 5 \ldots 4 \ldots 3 \ldots 2 \ldots 1
$$

Near the beginning gaps in the indices will in general occur.

Again, let us suppose that $r=o\left(\log p_{1}\right), r \neq o \sqrt{\left(\log p_{1}\right)}$, and $\mu=O(1)$ in (138) and (139). Then we see that

$$
\left.\begin{array}{l}
a_{p_{r}}=r+O\left(\frac{r^{2}}{\log p_{1}}\right), \\
a_{P_{r}}=r+O\left(\frac{r^{2}}{\log p_{1}}\right) ; \tag{142}
\end{array}\right\}
$$

provided that $r=o\left(\log p_{1}\right)$ and $r \neq o \sqrt{\left(\log p_{1}\right)}$. But when $r \neq o\left(\log p_{1}\right)$, we shall use the general result, viz.,

$$
\left.\begin{array}{ll}
a_{p_{r}}=O(r), & a_{p_{r}} \neq o(r), \\
a_{P_{r}}=O(r), & a_{P_{r}} \neq o(r), \tag{143}
\end{array}\right\}
$$

which is true for all values of r except 1 .
27. It follows from (87) and (128) that

$$
\left.\begin{array}{l}
\frac{\log p_{r}}{\log \left(1+\frac{1}{a_{p_{r}}}\right)} \leq \frac{\log p_{1}}{\log 2}+O\left\{\frac{\log p_{1} \log \mu}{r \mu}+r \mu+\sqrt{\left(\log p_{1} \log \log p_{1}\right)}\right\} \\
\frac{\log P_{r}}{\log \left(1+\frac{1}{1+a_{P_{r}}}\right)} \geq \frac{\log p_{1}}{\log 2}+O\left\{\frac{\log p_{1} \log \mu}{r \mu}+r \mu+\sqrt{\left(\log p_{1} \log \log p_{1}\right)}\right\} \tag{144}
\end{array}\right\}
$$

with the condition that $r \mu=o\left(\log p_{1}\right)$. From this it can easily be shewn, by arguments similar to those used in the beginning of the previous section, that

$$
\begin{equation*}
\frac{\log p_{r}}{\log (1+1 / r)}=\frac{\log p_{1}}{\log 2}+O\left\{\frac{\log p_{1} \log \mu}{r \mu}+r \mu+\sqrt{\left(\log p_{1} \log \log p_{1}\right)}\right\}, \tag{145}
\end{equation*}
$$

provided that $r \mu=o\left(\log p_{1}\right)$.
Now let us suppose that $r=o\left(\log p_{1}\right)$; then we can choose μ such that

$$
\mu=o\left(\frac{\log p_{1}}{r}\right), \quad \mu \neq O(1) .
$$

Consequently $r \mu=o\left(\log p_{1}\right)$ and $\log \mu=o(\mu)$, and so

$$
\frac{\log p_{1} \log \mu}{r \mu}=o\left(\log p_{1}\right)
$$

From these relations and (145) it follows that, if $r=o\left(\log p_{1}\right)$, then

$$
\begin{equation*}
\frac{\log p_{r}}{\log (1+1 / r)} \sim \frac{\log p_{1}}{\log 2} \tag{146}
\end{equation*}
$$

that is to say that, if $r=o\left(\log p_{1}\right)$, then

$$
\begin{equation*}
\frac{\log p_{1}}{\log 2} \sim \frac{\log p_{2}}{\log \left(1+\frac{1}{2}\right)} \sim \frac{\log p_{3}}{\log \left(1+\frac{1}{3}\right)} \sim \cdots \sim \frac{\log p_{r}}{\log (1+1 / r)} \tag{147}
\end{equation*}
$$

Again let us suppose that $r=O \sqrt{\left(\log p_{1} \log \log p_{1}\right)}$ in (145). Then it is possible to choose μ such that

$$
\left.\begin{array}{l}
r \mu=O \sqrt{\left(\log p_{1} \log \log p_{1}\right)} \tag{148}\\
r \mu \neq o \sqrt{\left(\log p_{1} \log \log p_{1}\right)}
\end{array}\right\}
$$

It is evident that $\log \mu=O\left(\log \log p_{1}\right)$, and so

$$
\frac{\log p_{1} \log \mu}{r \mu}=O\left(\frac{\log p_{1} \log \log p_{1}}{r \mu}\right)=O \sqrt{\left(\log p_{1} \log \log p_{1}\right)}
$$

in virtue of (148). Hence

$$
\begin{equation*}
\frac{\log p_{r}}{\log (1+1 / r)}=\frac{\log p_{1}}{\log 2}+O \sqrt{\left(\log p_{1} \log \log p_{1}\right)} \tag{149}
\end{equation*}
$$

provided that

$$
r=O \sqrt{\left(\log p_{1} \log \log p_{1}\right)}
$$

Now let us suppose that $r=o\left(\log p_{1}\right), r \neq o \sqrt{\left(\log p_{1} \log \log p_{1}\right)}$ and $\mu=O(1)$, in (145). Then it is evident that

$$
\log p_{1}=O\left(r^{2}\right), \quad \sqrt{\left(\log p_{1} \log \log p_{1}\right.}=O(r)
$$

and

$$
\frac{\log p_{1} \log \mu}{r \mu}=O\left(\frac{\left.\log p_{1}\right)}{r}\right)=O(r)
$$

Hence we see that

$$
\begin{equation*}
\frac{\log p_{r}}{\log (1+1 / r)}=\frac{\log p_{1}}{\log 2}+O(r) \tag{150}
\end{equation*}
$$

if

$$
r=o\left(\log p_{1}\right), \quad r \neq o \sqrt{\left(\log p_{1} \log \log p_{1}\right)}
$$

But, if $r \neq o\left(\log p_{1}\right)$, we see from (128) that

$$
\left.\begin{array}{c}
\frac{\log p_{r}}{\log (1+1 / r)}=O\left(\log p_{1}\right) \tag{151}\\
\frac{\log p_{r}}{\log (1+1 / r)} \neq o\left(\log p_{1}\right)
\end{array}\right\}
$$

From (150) and (151) it follows that, if $r \neq o \sqrt{\left(\log p_{1} \log \log p_{1}\right)}$, then

$$
\begin{equation*}
\frac{\log p_{r}}{\log (1+1 / r)}=\frac{\log p_{1}}{\log 2}+O(r) \tag{152}
\end{equation*}
$$

and from (149) and (152) that, if $r=o\left(\log p_{1}\right)$, then

$$
\frac{\log p_{r}}{\log (1+1 / r)} \sim \frac{\log p_{1}}{\log 2}
$$

in agreement with (147). This result will, in general, fail for the largest possible values of r, which are of order $\log p_{1}$.
It must be remembered that all the results involving p_{1} may be written in terms of N, since $p_{1}=O(\log N)$ and $p_{1} \neq o(\log N)$, and consequently

$$
\begin{equation*}
\log p_{1}=\log \log N+O(1) \tag{153}
\end{equation*}
$$

28. We shall now prove that successive highly composite numbers are asymptotically equivalent. Let m and n be any two positive integers which are prime to each other, such that

$$
\begin{equation*}
\log m n=o\left(\log p_{1}\right)=o(\log \log N) ; \tag{154}
\end{equation*}
$$

and let

$$
\begin{equation*}
\frac{m}{n}=2^{\delta_{2}} \cdot 3^{\delta_{3}} \cdot 5^{\delta_{5}} \cdots \wp^{\delta_{\wp}} . \tag{155}
\end{equation*}
$$

Then it is evident that

$$
\begin{equation*}
m n=2^{\left|\delta_{2}\right|} \cdot 3^{\left|\delta_{3}\right|} \cdot 5^{\left|\delta_{5}\right|} \cdots \gamma^{\left|\delta_{\delta}\right|} . \tag{156}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\delta_{\lambda} \log \lambda=O(\log m n)=o\left(\log p_{1}\right)=o\left(a_{\lambda} \log \lambda\right) ; \tag{157}
\end{equation*}
$$

so that $\delta_{\lambda}=o\left(a_{\lambda}\right)$.
Now

$$
\begin{equation*}
d\left(\frac{m}{n} N\right)=d(N)\left(1+\frac{\delta_{2}}{1+a_{2}}\right)\left(1+\frac{\delta_{3}}{1+a_{3}}\right) \cdots\left(1+\frac{\delta_{\wp}}{1+a_{\wp}}\right) . \tag{158}
\end{equation*}
$$

But, from (60), we know that

$$
a_{\lambda} \log \lambda=a_{2} \log 2+O \sqrt{\left(\log p_{1} \log \lambda\right)} .
$$

Hence

$$
1+\frac{\delta_{\lambda}}{1+a_{\lambda}}=1+\frac{\delta_{\lambda} \log \lambda}{a_{2} \log 2}+O\left\{\left|\delta_{\lambda}\right|\left(\frac{\log \lambda}{\log p_{1}}\right)^{\frac{3}{2}}\right\}
$$

$$
\begin{align*}
& =1+\frac{\delta_{\lambda} \log \lambda}{a_{2} \log 2}+O\left\{\left|\delta_{\lambda}\right| \frac{\log \lambda}{\log p_{1}} \sqrt{\left(\frac{\log \wp}{\log p_{1}}\right)}\right\} \\
& =\exp \left\{\frac{\delta_{\lambda} \log \lambda}{a_{2} \log 2}+O \frac{\left|\delta_{\lambda}\right| \log \lambda}{\log p_{1}} \sqrt{\left(\frac{\log \wp}{\log p_{1}}\right)}+O\left(\frac{\delta_{\lambda} \log \lambda}{\log p_{1}}\right)^{2}\right\} \\
& =\exp \left\{\frac{\delta_{\lambda} \log \lambda}{a_{2} \log 2}+O \frac{\left|\delta_{\lambda}\right| \log \lambda}{\log p_{1}} \sqrt{\left(\frac{\log m n}{\log p_{1}}\right)}\right\} \tag{159}
\end{align*}
$$

It follows from (155), (156), (158) and (159) that

$$
\begin{align*}
d\left(\frac{m}{n} N\right)= & d(N) \exp \left\{\frac{\delta_{2} \log 2+\delta_{3} \log 3+\cdots+\delta_{\wp} \log \wp}{a_{2} \log 2}\right. \\
& +O \frac{\left|\delta_{2}\right| \log 2+\left|\delta_{3}\right| \log 3+\cdots+\left|\delta_{\wp}\right| \log \wp}{\log p_{1}} \sqrt{\left.\left(\frac{\log m n}{\log p_{1}}\right)\right\}} \\
= & d(N) e^{\frac{\log (m / n)}{a_{2} \log 2}+O\left(\frac{\log m n}{\log p_{1}}\right)^{\frac{3}{2}}} \\
= & d(N) e^{\frac{1}{a_{2} \log 2}\left\{\log _{n}^{m}+O \log m n \sqrt{\left(\frac{\log m n}{\log p_{1}}\right)}\right\} .} \tag{160}
\end{align*}
$$

Putting $m=n+1$, we see that, if

$$
\log n=o\left(\log p_{1}\right)=o(\log \log N)
$$

then

$$
\begin{align*}
d\left\{N\left(1+\frac{1}{n}\right)\right\} & =d(N) e^{\frac{1}{a_{2} \log 2}\left\{\log \left(1+\frac{1}{n}\right)+O\left(\log n \sqrt{\frac{\log n}{\log p_{1}}}\right)\right\}} \\
& =d(N)\left(1+\frac{1}{n}\right)^{\frac{1+O\left\{n \log n \sqrt{\left(\frac{\log n}{\log \log N}\right)}\right\}}{a_{2} \log 2}} \tag{161}
\end{align*}
$$

Now it is possible to choose n such that

$$
n(\log n)^{\frac{3}{2}} \neq o \sqrt{(\log \log N)}
$$

and

$$
1+O\left\{n \log n \sqrt{\left(\frac{\log n}{\log \log N}\right)}\right\}>0
$$

that is to say

$$
\begin{equation*}
d\left\{N\left(1+\frac{1}{n}\right)\right\}>d(N) . \tag{162}
\end{equation*}
$$

From this and (29) it follows that, if N is a highly composite number, then the next highly composite number is of the form

$$
\begin{equation*}
N+O\left\{\frac{N(\log \log \log N)^{\frac{3}{2}}}{\sqrt{(\log \log N)}}\right\} \tag{163}
\end{equation*}
$$

Hence the ratio of two consecutive highly composite numbers tends to unity.
It follows from (163) that the number of highly composite numbers not exceeding x is not of the form

$$
o\left\{\frac{\log x \sqrt{(\log \log x)}}{(\log \log \log x)^{\frac{3}{2}}}\right\} .
$$

29. Now let us consider the nature of $d(N)$ for highly composite values of N. From (44) we see that

$$
\begin{equation*}
d(N)=2^{\pi\left(p_{1}\right)-\pi\left(p_{2}\right)} \cdot 3^{\pi\left(p_{2}\right)-\pi\left(p_{3}\right)} \cdot 4^{\pi\left(p_{3}\right)-\pi\left(p_{4}\right)} \cdots\left(1+a_{2}\right) . \tag{164}
\end{equation*}
$$

From this it follows that

$$
\begin{equation*}
d(N)=2^{a_{2}} \cdot 3^{a_{3}} \cdot 5^{a_{5}} \cdots \varpi^{a_{\varpi}}, \tag{165}
\end{equation*}
$$

where ϖ is the largest prime not exceeding $1+a_{2}$; and

$$
\begin{equation*}
\alpha_{\lambda}=\pi\left(p_{\lambda-1}\right)+O\left(p_{\lambda}\right) . \tag{166}
\end{equation*}
$$

It also follows that, if $\wp_{1}, \wp_{2}, \wp_{3}, \ldots, \wp_{\lambda}$ are a given set of primes, then a number $\bar{\mu}$ can be found such that the equation

$$
d(N)=\wp_{1}^{\beta_{1}} \cdot \wp_{2}^{\beta_{2}} \cdot \wp_{3}^{\beta_{3}} \cdots \wp_{\mu}^{\beta_{\mu}} \cdots \gamma_{\lambda}^{\beta_{\lambda}}
$$

is impossible if N is a highly composite number and $\beta_{\mu}>\bar{\mu}$. We may state this roughly by saying that as N (a highly composite number) tends to infinity, then, not merely in N itself, but also in $d(N)$, the number of prime factors, as well as the indices, must tend to infinity. In particular such an equation as

$$
\begin{equation*}
d(N)=k \cdot 2^{m}, \tag{167}
\end{equation*}
$$

where k is fixed, becomes impossible when m exceeds a certain limit depending on k.
It is easily seen from (153), (164), and (165) that

$$
\left.\begin{array}{l}
\varpi=O\left(a_{2}\right)=O\left(\log p_{1}\right)=O(\log \log N)=O\{\log \log d(N)\}, \\
\varpi \neq o\left(a_{2}\right)=o\left(\log p_{1}\right)=o(\log \log N)=o\{\log \log d(N)\} . \tag{168}
\end{array}\right\} *
$$

It follows from (147) that if $\lambda=o\left(\log p_{1}\right)$ then

$$
\begin{equation*}
\frac{\log \alpha_{2}}{\log \left(1-\frac{1}{2}\right)} \sim \frac{\log \alpha_{3}}{\log \left(1-\frac{1}{3}\right)} \sim \frac{\log \alpha_{5}}{\log \left(1-\frac{1}{5}\right)} \sim \cdots \frac{\log \alpha_{\lambda}}{\log \left(1-\frac{1}{\lambda}\right)} . \tag{169}
\end{equation*}
$$

Similarly, from (149), it follows that if $\lambda=O \sqrt{\left(\log p_{1} \log \log p_{1}\right)}$ then

$$
\begin{equation*}
\frac{\log \left(1+\alpha_{\lambda}\right)}{\log (1-1 / \lambda)}=-\frac{\log p_{1}}{\log 2}+O \sqrt{\left(\log p_{1} \log \log p_{1}\right)} \tag{170}
\end{equation*}
$$

Again, from (152), we see that if $\lambda \neq o \sqrt{\left(\log p_{1} \log \log p_{1}\right)}$ then

$$
\begin{equation*}
\frac{\log \left(1+\alpha_{\lambda}\right)}{\log (1-1 / \lambda)}=-\frac{\log p_{1}}{\log 2}+O(\lambda) \tag{171}
\end{equation*}
$$

In the left-hand side we cannot write α_{λ} instead of $1+\alpha_{\lambda}$, as α_{λ} may be zero for a few values of λ.
From (165) and (170) we can shew that

$$
\log d(N)=\alpha_{2} \log 2+O\left(\alpha_{3}\right), \quad \log d(N) \neq \alpha_{2} \log 2+o\left(\alpha_{3}\right) ;
$$

and so

$$
\begin{equation*}
\log d(N)=\alpha_{2} \log 2+e^{\frac{\log \frac{3}{2}}{\log 2} \log p_{1}+O \sqrt{\left(\log p_{1} \log \log p_{1}\right)}} \tag{172}
\end{equation*}
$$

But from (163) we see that

$$
\log \log d(N)=\log p_{1}+O\left(\log \log p_{1}\right)
$$

From this and (172) it follows that

$$
\begin{equation*}
a_{2} \log 2=\log d(N)-\{\log d(N)\}^{\left.\frac{\log \frac{3}{2}}{\log 2}+O \sqrt{\left\{\frac{\log \log \log d(N)}{\log \log d(N)}\right.}\right\}} . \tag{173}
\end{equation*}
$$

30. Now we shall consider the order of $d d(N)$ for highly composite values of N. It follows from (165) that

$$
\begin{equation*}
\log d d(N)=\log \left(1+\alpha_{2}\right)+\log \left(1+\alpha_{3}\right)+\cdots+\log \left(1+\alpha_{\varpi}\right) . \tag{174}
\end{equation*}
$$

Now let $\lambda, \lambda^{\prime}, \lambda^{\prime \prime}, \ldots$ be consecutive primes in ascending order, and let

$$
\lambda=O \sqrt{\left(\log p_{1} \log \log p_{1}\right)},
$$

[^9]Highly composite numbers

$$
\lambda \neq o \sqrt{\left(\log p_{1} \log \log p_{1}\right)} .
$$

Then, from (174), we have

$$
\begin{align*}
\log d d(N)= & \log \left(1+\alpha_{2}\right)+\log \left(1+\alpha_{3}\right)+\cdots+\log \left(1+\alpha_{\lambda}\right) \\
& +\log \left(1+\alpha_{\lambda^{\prime}}\right)+\log \left(1+a_{\lambda^{\prime \prime}}\right)+\cdots+\log \left(1+\alpha_{\varpi}\right) \tag{175}
\end{align*}
$$

But, from (170), we have

$$
\begin{align*}
\log \left(1+\alpha_{2}\right) & +\log \left(1+\alpha_{3}\right)+\cdots+\log \left(1+\alpha_{\lambda}\right) \\
= & -\frac{\log p_{1}}{\log 2} \log \left\{\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right) \cdots\left(1-\frac{1}{\lambda}\right)\right\} \\
& +O \sqrt{\left(\log p_{1} \log \log p_{1}\right)} \log \left\{\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \cdots\left(1-\frac{1}{\lambda}\right)\right\} \tag{176}
\end{align*}
$$

It can be shewn, without assuming the prime number theorem*, that

$$
\begin{equation*}
-\log \left\{\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right) \cdots\left(1-\frac{1}{p}\right)\right\}=\log \log p+\gamma+O\left(\frac{1}{\log p}\right) \tag{177}
\end{equation*}
$$

where γ is the Eulerian constant. Hence

$$
\log \left\{\left(1-\frac{1}{2}\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right) \cdots\left(1-\frac{1}{p}\right)\right\}=O(\log \log p) .\right.
$$

From this and (176) it follows that

$$
\begin{align*}
\log \left(1+\alpha_{2}\right) & +\log \left(1+\alpha_{3}\right)+\cdots+\log \left(1+\alpha_{\lambda}\right) \\
= & -\frac{\log p_{1}}{\log 2} \log \left\{\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \cdots\left(1-\frac{1}{\lambda}\right)\right\} \\
& +O\left\{\sqrt{\left(\log p_{1} \log \log p_{1}\right)} \log \log \lambda\right\} \\
= & -\frac{\log p_{1}}{\log 2} \log \left\{\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \cdots\left(1-\frac{1}{\lambda}\right)\right\} \\
& +O\left\{\sqrt{\left(\log p_{1} \log \log p_{1}\right)} \log \log \log p_{1}\right\} . \tag{178}
\end{align*}
$$

Again, from (152), we see that

$$
\begin{aligned}
& \log \left(1+\alpha_{\lambda^{\prime}}\right)+\log \left(1+\alpha_{\lambda^{\prime \prime}}\right)+\cdots+\log \left(1+\alpha_{\varpi}\right) \\
& \quad=-\frac{\log p_{1}}{\log 2} \log \left\{\left(1-\frac{1}{\lambda^{\prime}}\right)\left(1-\frac{1}{\lambda^{\prime \prime}}\right) \cdots\left(1-\frac{1}{\varpi}\right)\right\}
\end{aligned}
$$

[^10]\[

$$
\begin{align*}
& +O\left\{\lambda^{\prime} \log \left(1-\frac{1}{\lambda^{\prime}}\right)+\lambda^{\prime \prime} \log \left(1-\frac{1}{\lambda^{\prime \prime}}\right)+\cdots+\varpi \log \left(1-\frac{1}{\varpi}\right)\right\} \\
= & -\frac{\log p_{1}}{\log 2} \log \left\{\left(1-\frac{1}{\lambda^{\prime}}\right)\left(1-\frac{1}{\lambda^{\prime}}\right) \cdots\left(1-\frac{1}{\varpi}\right)\right\}+O\{\pi(\varpi)-\pi(\lambda)\} \\
= & -\frac{\log p_{1}}{\log 2}\left\{\left(1-\frac{1}{\lambda^{\prime}}\right)\left(1-\frac{1}{\lambda^{\prime \prime}}\right) \cdots\left(1-\frac{1}{\varpi}\right)\right\}+O\left(\frac{\log p_{1}}{\log \log p_{1}}\right) . \tag{179}
\end{align*}
$$
\]

From (175), (178) and (179) it follows that

$$
\begin{align*}
\log d d(N)= & -\frac{\log p_{1}}{\log 2} \log \left\{\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \cdots\left(1-\frac{1}{\lambda}\right)\right\} \\
& +O\left\{\sqrt{\left(\log p_{1} \log \log p_{1}\right)} \log \log \log p_{1}\right\} \\
& -\frac{\log p_{1}}{\log 2} \log \left\{\left(1-\frac{1}{\lambda^{\prime}}\right)\left(1-\frac{1}{\lambda^{\prime \prime}}\right) \cdots\left(1-\frac{1}{\varpi}\right)\right\}+O\left(\frac{\log p_{1}}{\log \log p_{1}}\right) \\
= & -\frac{\log p_{1}}{\log 2} \log \left\{\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \cdots\left(1-\frac{1}{\varpi}\right)\right\}+O\left(\frac{\log p_{1}}{\log \log p_{1}}\right) \\
= & \frac{\log p_{1}}{\log 2}\left\{\log \log \varpi+\gamma+O\left(\frac{1}{\log \varpi}\right)\right\}+O\left(\frac{\log p_{1}}{\log \log p_{1}}\right) \\
= & \frac{\log p_{1}}{\log 2}\left\{\log \log \log p_{1}+\gamma+O\left(\frac{1}{\log \log p_{1}}\right)\right\}+O\left(\frac{\log p_{1}}{\log \log p_{1}}\right) \\
= & \frac{\log \log N}{\log 2}\left\{\log \log \log \log N+\gamma+O\left(\frac{1}{\log \log \log N}\right)\right\} \tag{180}
\end{align*}
$$

in virtue of (177), (168), and (163). Hence, if N is a highly composite number, then

$$
\begin{equation*}
\left.d d(N)=(\log N)^{\frac{1}{\log 2}\left\{\log \log \log \log N+\gamma+O\left(\frac{1}{\log \log \log N}\right)\right.}\right) . \tag{181}
\end{equation*}
$$

31. It may be interesting to note that, as far as the table is constructed,

$$
\begin{array}{r}
2,2^{2}, 2^{3}, \ldots, 2^{13}, \quad 3,3 \cdot 2,3 \cdot 2^{2}, \ldots, 3 \cdot 2^{11}, \quad 5 \cdot 2,5 \cdot 2^{2}, \ldots, 5 \cdot 2^{8}, \\
7 \cdot 2^{5}, 7 \cdot 2^{6}, \ldots, 7 \cdot 2^{10}, \quad 9,9 \cdot 2,9 \cdot 2^{2}, \ldots, 9 \cdot 2^{10},
\end{array}
$$

and so on, occur as values of $d(N)$. But we know from $\S 29$ that $k \cdot 2^{m}$ cannot be the value of $d(N)$ for sufficiently large values of m; and so numbers of the form $k \cdot 2^{m}$ which occur as the value of $d(N)$ in the table must disappear sooner or later when the table is extended. Thus numbers of the form $5 \cdot 2^{m}$ have begun to disappear in the table itself. The powers of 2 disappear at any rate from 2^{18} onwards. The least number having 2^{18} divisors is

$$
2^{7} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 13 \cdots 41 \cdot 43
$$

while the smaller number, viz.,

$$
2^{8} \cdot 3^{4} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdots 41
$$

has a larger number of divisors. viz. $135 \cdot 2^{11}$. The numbers of the form $7 \cdot 2^{m}$ disappear at least from $7 \cdot 2^{13}$ onwards. The least number having $7 \cdot 2^{13}$ divisors is

$$
2^{6} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 13 \cdots 31 \cdot 37
$$

while the smaller number, viz.

$$
2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdots 31
$$

has a larger number of divisors, viz. $225 \cdot 2^{8}$.

$$
\stackrel{\text { IV }}{\text { Superior Highly }} \text { Composite Numbers }
$$

32. A number N may be said to be a superior highly composite number if there is a positive number ϵ such that

$$
\begin{equation*}
\frac{d(N)}{N^{\epsilon}} \geq \frac{d\left(N^{\prime}\right)}{\left(N^{\prime}\right)^{\epsilon}} \tag{182}
\end{equation*}
$$

for all values of N^{\prime} less that N, and

$$
\begin{equation*}
\frac{d(N)}{N^{\epsilon}}>\frac{d\left(N^{\prime}\right)}{\left(N^{\prime}\right)^{\epsilon}} \tag{183}
\end{equation*}
$$

for all values of N^{\prime} greater that N.
All superior highly composite numbers are also highly composite. For, if $N^{\prime}<N$, it follows from (182) that

$$
d(N) \geq d\left(N^{\prime}\right)\left(\frac{N}{N^{\prime}}\right)^{\epsilon}>d\left(N^{\prime}\right)
$$

and so N is highly composite.
33. Now let us consider what must be the nature of N in order that it should be a superior highly composite number. In the first place it must be of the form

$$
\begin{equation*}
2^{a_{2}} \cdot 3^{a_{3}} \cdot 5^{a_{5}} \cdots p_{1}^{a}, \tag{184}
\end{equation*}
$$

or of the form

$$
\begin{array}{r}
2 \cdot 3 \cdot 5 \cdot 7 \cdots p_{1} \\
\times \quad 2 \cdot 3 \cdot 5 \cdot 7 \cdots p_{2}
\end{array}
$$

$$
\begin{array}{ll}
\times & 2 \cdot 3 \cdot 5 \cdots p_{3} \\
\times & \cdots \cdots:
\end{array}
$$

i.e. it must satisfy the conditions for a highly composite number. Now let

$$
N^{\prime}=N / \lambda,
$$

where $\lambda \leq p_{1}$. Then from (182) it follows that

$$
\frac{1+a_{\lambda}}{\lambda^{\epsilon a_{\lambda}}} \geq \frac{a_{\lambda}}{\lambda^{\epsilon\left(a_{\lambda}-1\right)}},
$$

or

$$
\begin{equation*}
\lambda^{\epsilon} \leq\left(1+\frac{1}{a_{\lambda}}\right) . \tag{185}
\end{equation*}
$$

Again let

$$
N^{\prime}-N_{\lambda} .
$$

Then, from (183), we see that

$$
\frac{1+a_{\lambda}}{\lambda^{\epsilon a_{\lambda}}}>\frac{2+a_{\lambda}}{\lambda^{\epsilon\left(a_{\lambda}+1\right)}},
$$

or

$$
\begin{equation*}
\lambda^{\epsilon}>\left(1+\frac{1}{1+a_{\lambda}}\right) . \tag{186}
\end{equation*}
$$

Now supposing that $\lambda=p_{1}$ in (185) and $\lambda=P_{1}$ in (186), we obtain

$$
\begin{equation*}
\frac{\log 2}{\log P_{1}}<\epsilon \leq \frac{\log 2}{\log p_{1}} . \tag{187}
\end{equation*}
$$

Now let us suppose that $\epsilon=1 / x$. Then, from (187), we have

$$
\begin{equation*}
p_{1} \leq 2^{x}<P_{1} . \tag{188}
\end{equation*}
$$

That is, p_{1} is the largest prime not exceeding 2^{x}. It follows from (185) that

$$
\begin{equation*}
a_{\lambda} \leq\left(\lambda^{1 / x}-1\right)^{-1} . \tag{189}
\end{equation*}
$$

Similarly, from (186),

$$
\begin{equation*}
a_{\lambda}>\left(\lambda^{1 / x}-1\right)^{-1}-1 . \tag{190}
\end{equation*}
$$

From (189) and (190) it is clear that

$$
\begin{equation*}
\left.a_{\lambda}=\left[\lambda^{1 / x}-1\right)^{-1}\right] . \tag{191}
\end{equation*}
$$

Hence N is of the form

$$
\begin{equation*}
2^{\left[\left(2^{1 / x}-1\right)^{-1}\right]} \cdot 3^{\left[\left(3^{1 / x}-1\right)^{-1}\right]} \cdot 5^{\left[\left(5^{1 / x}-1\right)^{-1}\right]} \ldots p_{1} \tag{192}
\end{equation*}
$$

where p_{1} is the largest prime not exceeding 2^{x}.
34. Now let us suppose that $\lambda=p_{r}$ in (189). Then

$$
a_{p_{r}} \leq\left(p_{r}^{1 / x}-1\right)^{-1} .
$$

But we know that $r \leq a_{p r}$. Hence

$$
r \leq\left(p_{r}^{1 / x}-1\right)^{-1}
$$

or

$$
\begin{equation*}
p_{r} \leq\left(1+\frac{1}{r}\right)^{x} . \tag{193}
\end{equation*}
$$

Similarly by supposing that $\lambda=P_{r}$ in (190), we see that

$$
a_{P_{r}}>\left(P_{r}^{1 / x}-1\right)^{-1}-1 .
$$

But we know that $r-1 \geq a p_{r}$. Hence

$$
r>\left(P_{r}^{1 / x}-1\right)^{-1}
$$

or

$$
\begin{equation*}
P_{r}>\left(1+\frac{1}{r}\right)^{x} . \tag{194}
\end{equation*}
$$

From (193) and (194) it is clear that p_{r} is the largest prime not exceeding $(1+1 / r)^{x}$. Hence N is of the form

$$
\begin{align*}
& 2 \cdot 3 \cdot 5 \cdot 7 \cdots p_{1} \\
\times & 2 \cdot 3 \cdot 5 \cdot 7 \cdots p_{2} \\
\times & 2 \cdot 3 \cdot 5 \cdots p_{3} \\
\times & \cdots \cdots \cdots \cdot \tag{195}
\end{align*}
$$

where p_{1} is the largest prime not greater than $2^{x}, p_{2}$ is the largest prime not greater than $\left(\frac{3}{2}\right)^{x}$, and so on. In other words N is of the form

$$
\begin{equation*}
e^{\vartheta\left(2^{x}\right)+\vartheta\left(\frac{3}{2}\right)^{x}+\vartheta\left(\frac{4}{3}\right)^{x}+\cdots}, \tag{196}
\end{equation*}
$$

and $d(N)$ is of the form

$$
\begin{equation*}
2^{\pi\left(2^{x}\right)} \cdot\left(\frac{3}{2}\right)^{\pi\left(\frac{3}{2}\right)^{x}} \cdot\left(\frac{4}{3}\right)^{\pi\left(\frac{4}{3}\right)^{x}} \cdots \tag{197}
\end{equation*}
$$

Thus to every value of x not less than 1 correspondence one, and only one, value of N.
35. Since

$$
\frac{d(N)}{N^{1 / x}} \geq \frac{d\left(N^{\prime}\right)}{\left(N^{\prime}\right)^{1 / x}}
$$

for all values of N^{\prime}, it follows from (196) and (197) that

$$
\begin{equation*}
d(N) \leq N^{1 / x} \frac{2^{\pi\left(2^{x}\right)}}{e^{(1 / x) \vartheta\left(2^{x}\right)}} \frac{\left(\frac{3}{2}\right)^{\pi\left(\frac{3}{2}\right)^{x}}}{e^{(1 / x) \vartheta\left(\frac{3}{2}\right)^{x}}} \frac{\left(\frac{4}{3}\right)^{\pi\left(\frac{4}{3}\right)^{x}}}{e^{(1 / x) \vartheta\left(\frac{4}{3}\right)^{x}}} \cdots, \tag{198}
\end{equation*}
$$

for all values of N and x; and $d(N)$ is equal to the right-hand side when

$$
\begin{equation*}
N=e^{\vartheta\left(2^{x}\right)+\vartheta\left(\frac{3}{2}\right)^{x}+\vartheta\left(\frac{4}{3}\right)^{x}+\cdots} . \tag{199}
\end{equation*}
$$

Thus, for example, putting $x=2,3,4$ in (198), we obtain

$$
\left.\begin{array}{rl}
d(N) & \leq \sqrt{(3 N)} \tag{200}\\
d(N) & \leq 8(3 N / 35)^{\frac{1}{3}} \\
d(N) & \leq 96(3 N / 50050)^{\frac{1}{4}},
\end{array}\right\}
$$

for all values of N; and $d(N)=\sqrt{(3 N)}$ when $N=2^{2} \cdot 3 ; d(N)=8(3 N / 35)^{\frac{1}{3}}$ when $N=$ $2^{3} \cdot 3^{2} \cdot 5 \cdot 7 ; d(N)=96(3 N / 50050)^{\frac{1}{4}}$ when

$$
N=2^{5} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13
$$

36. M and N are consecutive superior highly composite numbers if there are no superior highly composite numbers between M and N.
From (195) and (196) it is easily seen that, if M and N are any two superior highly composite numbers, and if $M>N$, then M is a multiple of N; and also that, if M and N are two consecutive superior highly composite numbers, and if $M>N$, then M / N is a prime number. From this it follows that consecutive superior highly composite numbers are of the form

$$
\begin{equation*}
\pi_{1}, \quad \pi_{1} \pi_{2}, \quad \pi_{1} \pi_{2} \pi_{3}, \quad \pi_{1} \pi_{2} \pi_{3} \pi_{4}, \quad \ldots \tag{201}
\end{equation*}
$$

where $\pi_{1}, \pi_{2}, \pi_{3} \ldots$ are primes. In order to determine π_{1}, π_{2}, \ldots we proceed as follows. Let x_{1}^{\prime} be the smallest value of x such that $\left[2^{x}\right]$ is prime x_{2}^{\prime} the smallest value of x such that $\left[\left(\frac{3}{2}\right)^{x}\right]$ is prime, and so on; and let x_{1}, x_{2}, \ldots be the numbers $x_{1}^{\prime}, x_{2}^{\prime} \ldots$ arranged in order of magnitude. Then π_{n} is the prime corresponding to x_{n}, and

$$
\begin{equation*}
N=\pi_{1} \pi_{2} \pi_{3} \cdots \pi_{n} \tag{202}
\end{equation*}
$$

if $x_{n} \leq x<x_{n+1}$.
37. From the preceding results we see that the number of superior highly composite numbers not exceeding

$$
\begin{equation*}
e^{\vartheta\left(2^{x}\right)+\vartheta\left(\frac{3}{2}\right)^{x}+\vartheta\left(\frac{4}{3}\right)^{x}+\cdots} \tag{203}
\end{equation*}
$$

is

$$
\pi\left(2^{x}\right)+\pi\left(\frac{3}{2}\right)^{x}+\pi\left(\frac{4}{3}\right)^{x}+\cdots .
$$

In other words if $x_{n} \leq x<x_{n+1}$ then

$$
\begin{equation*}
n=\pi\left(2^{x}\right)+\pi\left(\frac{3}{2}\right)^{x}+\pi\left(\frac{4}{3}\right)^{x}+\cdots \tag{204}
\end{equation*}
$$

It follows from (192) and (202) that, of the primes $\pi_{1}, \pi_{2}, \pi_{3}, \ldots, \pi_{n}$, the number of primes which are equal to a given prime ϖ is equal to

$$
\begin{equation*}
\left[\left(\varpi^{1 / x}-1\right)^{-1}\right] . \tag{205}
\end{equation*}
$$

Further, the greatest of the primes $\pi_{1}, \pi_{2}, \pi_{3} \ldots, \pi_{n}$ is the largest prime not greater than 2^{x}, and is asymptotically equivalent to the natural nth prime, in virtue of (204).

The following table gives the values of π_{n} and x_{n} for the first 50 values of n, that is till x_{n} reaches very nearly 7 .

$$
\begin{array}{ll}
\pi_{1}=2 & x_{1}=\frac{\log 2}{\log 2}=1 \\
\pi_{2}=3 & x_{2}=\frac{\log 3}{\log 2}=1.5849 \ldots \\
\pi_{3}=2 & x_{3}=\frac{\log 2}{\log \left(\frac{3}{2}\right)}=1.7095 \ldots \\
\pi_{4}=5 & x_{4}=\frac{\log 5}{\log 2}=2.3219 \ldots \\
\pi_{5}=2 & x_{5}=\frac{\log 2}{\log \left(\frac{4}{3}\right)}=2.4094 \ldots
\end{array}
$$

$\pi_{6}=3$	$x_{6}=\frac{\log 3}{\log \left(\frac{3}{2}\right)}=2.7095 .$
$\pi_{7}=7$	$x_{7}=\frac{\log 7}{\log 2}=2.8073 \ldots$
$\pi_{8}=2$	$x_{8}=\frac{\log 2}{\log \left(\frac{5}{4}\right)}=3.1062 \ldots$
$\pi_{9}=11$	$x_{9}=\frac{\log 11}{\log 2}=3.4594 \ldots$
$\pi_{10}=13$	$x_{10}=\frac{\log 13}{\log 2}=3.7004 \ldots$
$\pi_{11}=2$	$x_{11}=\frac{\log 2}{\log \left(\frac{6}{5}\right)}=3.8017 \ldots$
$\pi_{12}=3$	$x_{12}=\frac{\log 3}{\log \left(\frac{4}{3}\right)}=3.8188 \ldots$
$\pi_{13}=5$	$x_{13}=\frac{\log 5}{\log \left(\frac{3}{2}\right)}=3.9693 \cdots$
$\pi_{14}=17$	$x_{14}=\frac{\log 17}{\log 2}=4.0874 \ldots$
$\pi_{15}=19$	$x_{15}=\frac{\log 19}{\log 2}=4.2479 \ldots$
$\pi_{16}=2$	$x_{16}=\frac{\log 2}{\log \left(\frac{7}{6}\right)}=4.4965 \ldots$
$\pi_{17}=23$	$x_{17}=\frac{\log 23}{\log 2}=4.5235 \ldots$
$\pi_{18}=7$	$x_{18}=\frac{\log 7}{\log \left(\frac{3}{2}\right)}=4.7992 \ldots$
$\pi_{19}=29$	$x_{19}=\frac{\log 29}{\log 2}=4.8579 \ldots$
$\pi_{20}=3$	$x_{20}=\frac{\log 3}{\log \left(\frac{5}{4}\right)}=4.9233 \ldots$
$\pi_{21}=31$	$x_{21}=\frac{\log 31}{\log 2}=4.9541 \ldots$
$\pi_{22}=2$	$x_{22}=\frac{\log 2}{\log \left(\frac{8}{7}\right)}=5.1908 \ldots$
$\pi_{23}=37$	$x_{23}=\frac{\log 37}{\log 2}=5.2094 \ldots$
$\pi_{24}=41$	$x_{24}=\frac{\log 41}{\log 2}=5.3575 \ldots$
$\pi_{25}=43$	$x_{25}=\frac{\log 43}{\log 2}=5.4262 \ldots$
$\pi_{26}=47$	$x_{26}=\frac{\log 47}{\log 2}=5.5545 \ldots$

$$
\begin{array}{ll}
\pi_{27}=5 & x_{27}=\frac{\log 5}{\log \left(\frac{4}{3}\right)}=5.5945 \ldots \\
\pi_{28}=53 & x_{28}=\frac{\log 3}{\log 2}=5.7279 \ldots \\
\pi_{29}=59 & x_{29}=\frac{\log 59}{\log 2}=5.8826 \ldots \\
\pi_{30}=2 & x_{30}=\frac{\log 2}{\log \left(\frac{9}{8}\right)}=5.8849 \ldots \\
\pi_{31}=11 & x_{31}=\frac{\log 11}{\log \left(\frac{3}{2}\right)}=5.9139 \ldots \\
\pi_{32}=61 & x_{32}=\frac{\log 61}{\log 2}=5.9307 \ldots \\
\pi_{33}=3 & x_{33}=\frac{\log 3}{\log \left(\frac{6}{5}\right)}=6.0256 \ldots \\
\pi_{34}=67 & x_{34}=\frac{\log 7}{\log 2}=6.0660 \ldots \\
\pi_{35}=71 & x_{35}=\frac{\log 71}{\log 2}=6.1497 \ldots \\
\pi_{36}=73 & x_{36}=\frac{\log 73}{\log 2}=6.1898 \ldots \\
\pi_{37}=79 & x_{37}=\frac{\log 79}{\log 2}=6.3037 \ldots \\
\pi_{38}=13 & x_{38}=\frac{\log 13}{\log \left(\frac{3}{2}\right)}=6.3259 \ldots \\
\pi_{39}=83 & x_{39}=\frac{\log 83}{\log 2}=6.3750 \ldots \\
\pi_{40}=89 & x_{40}=\frac{\log 89}{\log 2}=6.4757 \ldots \\
\pi_{41}=2 & x_{41}=\frac{\log 2}{\log \left(\frac{10}{9}\right)}=6.5790 \ldots \\
\pi_{42}=97 & x_{42}=\frac{\log 97}{\log 2}=6.5999 \ldots \\
\pi_{43}=101 & x_{43}=\frac{\log 101}{\log 2}=6.6582 \ldots \\
\pi_{44}=103 & x_{44}=\frac{\log 103}{\log 2}=6.6724 \ldots \\
\pi_{45}=107 & x_{45}=\frac{\log 107}{\log 2}=6.7414 \ldots \\
\pi_{46}=7 & x_{46}=\frac{\log 7}{\log \left(\frac{4}{3}\right)}=6.7641 \ldots \\
\pi_{47}=109 & x_{47}=\frac{\log 109}{\log 2}=6.7681 \ldots \\
\pi_{48}=113 & x_{48}=\frac{\log 113}{\log 2}=6.8201 \ldots \\
\pi_{49}=17 & x_{49}=\frac{\log 17}{\log \left(\frac{3}{2}\right)}=6.9875 \ldots \\
\pi_{50}=127 & x_{50}=\frac{\log 127}{\log 2}=6.9886 \ldots
\end{array}
$$

38. It follows from (17) and (198) that $\log d(N) \leq F(x)$, where

$$
\begin{equation*}
F(x)=\frac{1}{x} \log N+\frac{1}{x}\left\{\int_{2}^{2^{x}} \frac{\pi(t)}{t} d t+\int_{2}^{\left(\frac{3}{2}\right)^{x}} \frac{\pi(t)}{t} d t+\int_{2}^{\left(\frac{4}{3}\right)^{x}} \frac{\pi(t)}{t} d t+\cdots\right\} \tag{206}
\end{equation*}
$$

for all values of N and x. In order to obtain the best possible upper limit for $\log d(N)$, we must choose x so as to make the right-hand side a minimum.
The function $F(x)$ is obviously continuous unless $(1+1 r)^{x}=p$, where r is a positive integer and p a prime. It is easily seen to be continuous even then, and so continuous without exception. Also

$$
\begin{array}{r}
F^{\prime}(x)=-\frac{1}{x^{2}} \log N-\frac{1}{x^{2}}\left\{\int_{2}^{2^{x}} \frac{\pi(t)}{t} d t+\int_{2}^{\left(\frac{3}{2}\right)^{x}} \frac{\pi(t)}{t} d t+\cdots\right\} \\
+\frac{1}{x}\left\{\pi\left(2^{x}\right) \log 2+\pi\left(\frac{3}{2}\right)^{x} \log \frac{3}{2}+\cdots\right\} \\
=\frac{1}{x^{2}}\left\{\vartheta\left(2^{x}\right)+\vartheta\left(\frac{3}{2}\right)^{x}+\vartheta\left(\frac{4}{3}\right)^{x}+\cdots-\log N\right\}, \tag{207}
\end{array}
$$

unless $(1+1 / r)^{x}=p$, in virtue of (17).
Thus we see that $F(x)$ is continuous, and $F^{\prime}(x)$ exists and is continuous except at certain isolated points. The sign of $F^{\prime}(x)$, where it exists, is that of
and

$$
\begin{gathered}
\vartheta\left(2^{x}\right)+\vartheta\left(\frac{3}{2}\right)^{x}+\vartheta\left(\frac{4}{3}\right)^{x}+\cdots-\log N \\
\vartheta\left(2^{x}\right)+\vartheta\left(\frac{3}{2}\right)^{x}+\vartheta\left(\frac{4}{3}\right)^{x}+\cdots
\end{gathered}
$$

is a monotonic function. Thus $F^{\prime}(x)$ is first negative and then positive, changing sign once only, and so $F(x)$ has a unique minimum. Thus $F(x)$ is a minimum when x is a function of N defined by the inequalities

$$
\vartheta\left(2^{v}\right)+\vartheta\left(\frac{3}{2}\right)^{v}+\vartheta\left(\frac{4}{3}\right)^{v}+\cdots\left\{\begin{array}{c}
<\log N(y<x) \tag{208}\\
>\log N(y>x)
\end{array}\right\} .
$$

Now let $D(N)$ be a function of N such that

$$
\begin{equation*}
D(N)=2^{\pi\left(2^{x}\right)}\left(\frac{3}{2}\right)^{\pi\left(\frac{3}{2}\right)^{x}}\left(\frac{4}{3}\right)^{\pi\left(\frac{4}{3}\right)^{x}} \cdots \tag{209}
\end{equation*}
$$

where x is the function of N defined by the inequalities (208). Then, from (198), we see that

$$
\begin{equation*}
d(N) \leq D(N), \tag{210}
\end{equation*}
$$

for all values of N; and $d(N)=D(N)$ for all superior highly composite values of N. Hence $D(N)$ is the maximum order of $d(N)$. In other words, $d(N)$ will attain its maximum order when N is a superior highly composite number.

> V.
> Application to the Order of $d(N)$.
39. The most precise result known concerning the distribution of the prime numbers is that

$$
\left.\begin{array}{l}
\pi(x)=L i(x)+O\left(x e^{-a \sqrt{\log x}}\right) \tag{211}\\
\vartheta(x)=x+O\left(x e^{-a \sqrt{\log x}}\right)
\end{array}\right\}
$$

where

$$
L i(x)=\int^{x} \frac{d t}{\log t}
$$

and a is a positive constant.
In order to find the maximum order of $d(N)$ we have merely to determine the order of $D(N)$ from the equations (208) and (209). Now, from (208), we have

$$
\log N=\vartheta\left(2^{x}\right)+O\left(\frac{3}{2}\right)^{x}=\vartheta\left(2^{x}\right)+o\left(2^{2 x / 3}\right) ;
$$

and so

$$
\begin{equation*}
\vartheta\left(2^{x}\right)=\log N+o(\log N)^{\frac{2}{3}} ; \tag{212}
\end{equation*}
$$

and similarly from (209) we have

$$
\begin{equation*}
\pi\left(2^{x}\right)=\frac{\log D(N)}{\log 2}+o(\log N)^{\frac{2}{3}} . \tag{213}
\end{equation*}
$$

It follows from (211) - (213) that the maximum order of $d(N)$ is

$$
\begin{equation*}
2^{L i(\log N)+O\left[\log N e^{-a \sqrt{(\log \log N)}}\right]} . \tag{214}
\end{equation*}
$$

It does not seen to be possible to obtain an upper limit for $d(N)$ notably more precise than (214) without assuming results concerning the distribution of primes which depend on hitherto unproved properties of the Riemann ζ-function.
40. We shall now assume that the "Riemann hypothesis" concerning the ζ-function is true, i.e., that all the complex roots of $\zeta(s)$ have their real part equal to $\frac{1}{2}$. Then it is known that

$$
\begin{equation*}
\vartheta(x)=x-\sqrt{x}-\sum \frac{x^{\rho}}{\rho}+O\left(x^{\frac{1}{3}}\right) \tag{215}
\end{equation*}
$$

where ρ is a complex root of $\zeta(s)$, and that

$$
\pi(x)=\operatorname{Li}(x)-\frac{1}{2} L i(\sqrt{x})-\sum \operatorname{Li}\left(x^{\rho}\right)+O\left(x^{\frac{1}{3}}\right)
$$

$$
\begin{equation*}
=\operatorname{Li}(x)-\frac{\sqrt{x}}{\log x}-\frac{2 \sqrt{x}}{(\log x)^{2}}-\frac{1}{\log x} \sum \frac{x^{\rho}}{\rho}-\frac{1}{(\log x)^{2}} \sum \frac{x^{\rho}}{\rho^{2}}+O\left\{\frac{\sqrt{x}}{(\log x)^{3}}\right\} \tag{216}
\end{equation*}
$$

since $\sum \frac{x^{\rho}}{\rho^{k}}$ is absolutely convergent when $k>1$. Also it is known that

$$
\begin{equation*}
\sum \frac{x^{\rho}}{\rho}=O\left\{\sqrt{x(\log x)^{2}}\right\} \tag{217}
\end{equation*}
$$

and so

$$
\begin{equation*}
\vartheta(x)-x=O\left\{\sqrt{x(\log x)^{2}}\right\} . \tag{218}
\end{equation*}
$$

From (215) and (216) it is clear that

$$
\begin{equation*}
\pi(x)=L i(x)+\frac{\vartheta(x)-x}{\log x}-R(x)+O\left\{\frac{\sqrt{x}}{\log x)^{3}}\right\} \tag{219}
\end{equation*}
$$

where

$$
\begin{equation*}
R(x)=\frac{2 \sqrt{x}+\sum \frac{x^{\rho}}{\rho^{2}}}{(\log x)^{2}} \tag{220}
\end{equation*}
$$

But it follows from Taylor's theorem and (218) that

$$
\begin{equation*}
L i \vartheta(x)-\operatorname{Li}(x)=\frac{\vartheta(x)-x}{\log x}+O(\log x)^{2}, \tag{221}
\end{equation*}
$$

and from (219) and (221) it follows that

$$
\begin{equation*}
\pi(x)=\operatorname{Li\vartheta }(x)-R(x)+O\left\{\frac{\sqrt{x}}{(\log x)^{3}}\right\} \tag{222}
\end{equation*}
$$

41. It follows from the functional equation satisfied by $\zeta(s)$, viz.,

$$
\begin{equation*}
(2 \pi)^{-s} \Gamma(s) \zeta(s) \cos \frac{1}{2} \pi s=\frac{1}{2} \zeta(1-s) \tag{223}
\end{equation*}
$$

that

$$
(1-s) \pi^{-\frac{1}{4} \sqrt{s}} \Gamma\left(\frac{1+\sqrt{s}}{4}\right) \zeta\left(\frac{1+\sqrt{s}}{2}\right)
$$

is an integral function of s whose apparent order is less than 1 , and hence is equal to

$$
\Gamma\left(\frac{1}{4}\right) \zeta\left(\frac{1}{2}\right) \prod\left\{1-\frac{s}{(2 \rho-1)^{2}}\right\}
$$

[where ρ runs through the complex roots of $\zeta(s)$ whose imaginary parts are positive]. From this we can easily deduce that

$$
\begin{equation*}
s(1+s) \pi^{-\frac{1+s}{2}} \Gamma\left(\frac{1+s}{2}\right) \zeta(1+s)=\prod\left(1+\frac{s}{\rho}\right) \tag{224}
\end{equation*}
$$

[where ρ now runs through all the roots]. Subtracting 1 from both sides, dividing the result by s, and then making $s \rightarrow 0$, we obtain

$$
\begin{equation*}
\sum \frac{1}{\rho}=1+\frac{1}{2}(\gamma-\log 4 \pi) \tag{225}
\end{equation*}
$$

where γ is the Eulerian constant. Hence we see that

$$
\begin{align*}
&\left|\sum \frac{x^{\rho}}{\rho^{2}}\right| \leq \sum\left|\frac{x^{\rho}}{\rho^{2}}\right|=\sqrt{x} \sum \frac{1}{\rho(1-\rho)}=\sqrt{x} \sum\left(\frac{1}{\rho}+\frac{1}{1-\rho}\right) \\
&=2 \sqrt{x} \sum \frac{1}{\rho}=\sqrt{x}(2+\gamma-\log 4 \pi) . \tag{226}
\end{align*}
$$

It follows from (220) and (226) that

$$
\begin{equation*}
(\log 4 \pi-\gamma) \sqrt{x} \leq R(x)(\log x)^{2} \leq(4+\gamma-\log 4 \pi) \sqrt{x} \tag{227}
\end{equation*}
$$

It can easily be verified that

$$
\left.\begin{array}{l}
\log 4 \pi-\gamma=1.954 \tag{228}\\
4+\gamma-\log 4 \pi=2.046
\end{array}\right\}
$$

approximately.
42. Now

$$
R(x)=\frac{2 \sqrt{x}+S(x)}{(\log x)^{2}}
$$

where

$$
S(x)=\sum \frac{x^{\rho}}{\rho^{2}}
$$

so that, considering $R(x)$ as a function of a continuous variable, we have

$$
\begin{aligned}
R^{\prime}(x) & =\frac{1}{\sqrt{x}(\log x)^{2}}-\frac{4 \sqrt{x}+2 S(x)}{x(\log x)^{3}}+\frac{S^{\prime}(x)}{(\log x)^{2}} \\
& =\frac{S^{\prime}(x)}{(\log x)^{2}}+O\left\{\frac{1}{\sqrt{x}(\log x)^{2}}\right\}
\end{aligned}
$$

for all values of x for which $S(x)$ possesses a differential coefficient.
Now the derived series of $S(x)$, viz.,

$$
\bar{S}(x)=\frac{1}{x} \sum \frac{x^{\rho}}{\rho}
$$

is uniformly convergent throughout any interval of positive values of x which does not include any value of x of the form $x=p^{m}$; and $S(x)$ is continuous for all values of x. It follows that

$$
S\left(x_{1}\right)-S\left(x_{2}\right)=\int_{x_{1}}^{x_{2}} \bar{S}(x) d x
$$

for all positive values of x_{1} and x_{2}, and that $S(x)$ possesses a derivative

$$
S^{\prime}(x)=\bar{S}(x),
$$

whenever x is not of the form p^{m}. Also

$$
\bar{S}(x)=O\left\{\frac{(\log x)^{2}}{\sqrt{x}}\right\}
$$

Hence

$$
\begin{equation*}
R(x+h)=R(x)+\int_{x}^{x+h} O\left(\frac{1}{\sqrt{t}}\right) d t=R(x)+O\left(\frac{h}{\sqrt{x}}\right) . \tag{229}
\end{equation*}
$$

43. Now

$$
\begin{aligned}
\log N & =\vartheta\left(2^{x}\right)+\vartheta\left(\frac{3}{2}\right)^{x}+O\left(\frac{4}{3}\right)^{x} \\
& =\vartheta\left(2^{x}\right)+\left(\frac{3}{2}\right)^{x}+O\left\{x^{2}\left(\frac{3}{2}\right)^{\frac{1}{2} x}\right\}+O\left(\frac{4}{3}\right)^{x} \\
& =\vartheta\left(2^{x}\right)+\left(\frac{3}{2}\right)^{x}+O\left(2^{5 x / 12}\right) .
\end{aligned}
$$

Similarly $\log D(N)=\log 2 \cdot \pi\left(2^{x}\right)+\log \left(\frac{3}{2}\right) \operatorname{Li}\left(\frac{3}{2}\right)^{x}+O\left(2^{5 x / 12}\right)$. Writing X for 2^{x}, we have

$$
\left.\begin{array}{l}
\log N=\vartheta(X)+X^{\log \left(\frac{3}{2}\right) / \log 2}+O\left\{(\log N)^{\frac{5}{12}}\right\} \tag{230}\\
\log D(N)=\log 2 \cdot \pi(X)+\log \left(\frac{3}{2}\right) L i\left\{X^{\log \left(\frac{3}{2}\right) / \log 2}\right\}+O\left(X^{\frac{5}{12}}\right.
\end{array}\right\}
$$

It follows that

$$
\log N=X+O\left[X^{\log \left(\frac{3}{2} / \log 2\right.}\right]
$$

and so

$$
\begin{equation*}
X=\log N+O\left[(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}\right] \tag{231}
\end{equation*}
$$

Again, from (230) and (231), it follows that

$$
\begin{equation*}
\log N=\vartheta(X)+(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}+O\left\{(\log N)^{\frac{5}{12}}\right\} \tag{232}
\end{equation*}
$$

and

$$
\begin{align*}
\log D(N)= & \log 2 \cdot \pi(X)+\log \left(\frac{3}{2}\right) L i(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}+O\left\{(\log N)^{\frac{5}{12}}\right\} \\
= & \log 2\left\{\operatorname{Li\vartheta }(X)-R(X)+O\left[\frac{\sqrt{X}}{(\log X)^{3}}\right]\right\} \\
& +\log \left(\frac{3}{2}\right) L i\left\{(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}\right\}+O\left\{(\log N)^{\frac{5}{12}}\right\}, \tag{233}
\end{align*}
$$

Highly composite numbers
in virtue of (222). From (231) and (233) it evidently follows that

$$
\begin{align*}
\log D(N)= & \log 2 \cdot \operatorname{Li\vartheta }(X)-\log 2 \cdot R(X)+\log \left(\frac{3}{2}\right) \operatorname{Li}\left\{(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}\right\} \\
& +O\left\{\frac{\sqrt{(\log N)}}{(\log \log N)^{3}}\right\} \\
= & \log 2 \cdot \operatorname{Li}\left\{\log N-(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}+O(\log N)^{\frac{5}{12}}\right\} \\
& -\log 2 \cdot R\left\{\log N+O(\log N)^{\log \left(\frac{3}{2} / \log 2\right.}\right\} \\
& +\log \left(\frac{3}{2}\right) L i\left\{(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}\right\}+O\left\{\frac{\sqrt{(\log N)}}{(\log \log N)^{3}}\right\} \tag{234}
\end{align*}
$$

in virtue of (231) and (232). But

$$
\begin{aligned}
& \left.L i\left\{\log N-(\log N)^{\left\lvert\, \log \left(\frac{3}{2}\right) / \log 2\right.}\right\}+O(\log N)^{\frac{5}{12}}\right\} \\
& \quad=\operatorname{Li}(\log N)-\frac{(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}}{\log \log N}+O\left\{\frac{(\log N)^{\frac{5}{12}}}{\log \log N}\right\}+O\left\{\frac{(\log N)^{\left\{2 \log \left(\frac{3}{2}\right) / \log 2\right\}-1}}{(\log \log N)^{2}}\right\} \\
& \quad=\operatorname{Li}(\log N)-\frac{(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}}{\log \log N}+O(\log N)^{\frac{5}{12}} ;
\end{aligned}
$$

and

$$
\begin{aligned}
R\left\{\log N+O(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}\right\} & =R(\log N)+O\left\{(\log N)^{\left\{\log \left(\frac{3}{2}\right) / \log 2\right\}-\frac{1}{2}}\right\} \\
& =R(\log N)+O(\log N)^{\frac{1}{10}}
\end{aligned}
$$

in virtue of (229). Hence (234) may be replaced by

$$
\begin{align*}
& \log D(N)=\log 2 \cdot L i(\log N)+\log \left(\frac{3}{2}\right) L i\left\{(\log n)^{\log \left(\frac{3}{2}\right) \log 2}\right\} \\
& \quad-\log 2 \frac{(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}}{\log \log N}-\log 2 \cdot R(\log N)+O\left\{\frac{\sqrt{(\log N)}}{(\log \log N)^{3}}\right\} . \tag{235}
\end{align*}
$$

That is to say the maximum order of $d(N)$ is

$$
\begin{equation*}
2^{L i(\log N)+\phi(N)} \tag{236}
\end{equation*}
$$

where

$$
\begin{aligned}
\phi(N)= & \frac{\log \left(\frac{3}{2}\right)}{\log 2} L i\left\{(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}\right\}-\frac{(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}}{\log \log N}-R(\log N) \\
& +O\left\{\frac{\sqrt{(\log N)}}{(\log \log N)^{3}}\right\} .
\end{aligned}
$$

This order is actually attained for an infinity of values of N.
44. We can now find the order of the number of superior highly composite numbers not exceeding a given number N. Let N^{\prime} be the smallest superior highly composite number greater than N, and let

$$
N^{\prime}=e^{\vartheta\left(2^{x}\right)+\vartheta\left(\frac{3}{2}\right)^{x}+\vartheta\left(\frac{4}{3}\right)^{x}+\cdots}
$$

Then, from § 37, we know that

$$
\begin{equation*}
2 N \leq N^{\prime} \leq 2^{x} N, \tag{237}
\end{equation*}
$$

so that $N^{\prime}=0(N \log N)$; and also that the number of superior highly composite numbers not exceeding N^{\prime} is

$$
n=\pi\left(2^{x}\right)+\pi\left(\frac{3}{2}\right)^{x}+\pi\left(\frac{4}{3}\right)^{x}+\cdots .
$$

By arguments similar to those of the previous section we can shew that

$$
\begin{align*}
n= & L i(\log N)+L i(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}-\frac{(\log N)^{\log \left(\frac{3}{2}\right) / \log 2}}{\log \log N}-R(\log N) \\
& +O\left\{\frac{\sqrt{(\log N)}}{(\log \log N)^{3}}\right\} . \tag{238}
\end{align*}
$$

It is easy to see from $\S 37$ that, if the largest superior highly composite number not exceeding N is

$$
2^{a_{2}} \cdot 3^{a_{3}} \cdot 5^{a_{5}} \cdots p^{a_{p}}
$$

then the number of superior highly composite numbers not exceeding N is the sum of all the indices, viz,

$$
a_{2}+a_{3}+a_{5}+\cdots+a_{p}
$$

45. Proceeding as in $\S 28$, we can shew that, if N is a superior highly composite number and m and n are any two positive integers such that $[n$ is a divisor of N, and]

$$
\log m n=o(\log \log N)
$$

then

$$
\begin{equation*}
d\left(\frac{m}{n} N\right)=d(N) 2^{\frac{\log (m / n)}{\log \log N}+o\left(\frac{\log m n}{\log \log N}\right)^{2}} . \tag{239}
\end{equation*}
$$

From this we can easily shew that the next highly composite number is of the form

$$
\begin{equation*}
N+O\left\{\frac{N(\log \log \log N)^{2}}{\log \log N}\right\} \tag{240}
\end{equation*}
$$

Again, let us S and S be any two consecutive superior highly composite numbers, and let

$$
S=e^{\vartheta\left(2^{x}\right)+\vartheta\left(\frac{3}{2}\right)+\vartheta\left(\frac{4}{3}\right)^{x}+\cdots}
$$

Then it follows from § 35 that

$$
\begin{equation*}
d(N)<\left(\frac{N}{S}\right)^{1 / x} d(S) \tag{241}
\end{equation*}
$$

for all values of N except S and s^{\prime}. Now, if S be the nth superior highly composite number, so that

$$
x_{n} \leq x<x_{n+1},
$$

where x_{n} is the same as in $\S 36$, we see that

$$
d(N)<\left(\frac{N}{S}\right)^{1 / x_{n}} d(S)
$$

for all values of N except S and s^{\prime}. If N is S or S^{\prime}, then the inequality becomes an equality. It follows from $\S 36$ that $d(S) \leq 2 d\left(S^{\prime}\right)$. Hence, if N be highly composite and $S^{\prime}<N<S$, so that $d S^{\prime}<d(N)<d(S)$, then

$$
\frac{1}{2} d(S)<d(N)<d\left(S^{\prime}\right), \quad d\left(S^{\prime}\right)<d(N)<2 d\left(S^{\prime}\right) .
$$

From this it is easy to see that the order (236) is actually attained by $d(N)$ whenever N is a highly composite number. But it may also be attained when N is not a highly composite number. For example, if

$$
N=\left(2 \cdot 3 \cdot 5 \cdots p_{1}\right) \times\left(2 \cdot 3 \cdot 5 \cdots p_{2}\right),
$$

where p_{1} is the largest prime not greater than 2^{x}, and p_{2} the largest prime not greater than $\left(\frac{3}{2}\right)^{x}$, it is easily seen that $d(N)$ attains the order (236): and N is not highly composite.
VI.

Special Forms of N.
46. In $\S \S-38$ we have indirectly solved the following problem: to find the relations which must hold between $x_{1}, x_{2}, x_{3}, \ldots$ in order that

$$
2^{\pi\left(x_{1}\right)} \cdot\left(\frac{3}{2}\right)^{x\left(x_{2}\right)} \cdot\left(\frac{4}{3}\right)^{\pi\left(x_{3}\right)} \cdots
$$

may be a maximum, when it is given that

$$
\vartheta\left(x_{1}\right)+\vartheta\left(x_{2}\right)+\vartheta\left(x_{3}\right)+\cdots
$$

is a fixed number. The relations which we obtained are

$$
\frac{\log 2}{\log x_{1}}=\frac{\log \left(\frac{3}{2}\right)}{\log x_{2}}=\frac{\log \left(\frac{4}{3}\right)}{\log x_{3}}=\cdots
$$

This suggests the following more general problem. If N is an integer of the form

$$
\begin{equation*}
e^{c_{1} \vartheta\left(x_{1}\right)+c_{2} \vartheta\left(x_{2}\right)+c_{3} \vartheta\left(x_{3}\right)+\cdots} \tag{242}
\end{equation*}
$$

where $c_{1}, c_{2}, c_{3}, \ldots$ are any given positive integers, it is required to find the nature of N, that is to say the relations which hold between $x_{1}, x_{2}, x_{3}, \ldots$, when $d(N)$ is of maximum order. From (242) we see that

$$
d(N)=\left(1+c_{1}\right)^{\pi\left(x_{1}\right)}\left(\frac{1+c_{1}+c_{2}}{1+c_{1}}\right)^{\pi\left(x_{2}\right)}\left(\frac{1+c_{1}+c_{2}+c_{3}}{1+c_{1}+c_{2}}\right)^{\pi\left(x_{3}\right)}
$$

If we define the "superior" numbers of the class (242) by the inequalities

$$
\frac{d(N)}{N^{\epsilon}} \geq \frac{d\left(N^{\prime}\right)}{\left(N^{\prime}\right)^{\epsilon}}
$$

for all values of N^{\prime} less than N, and

$$
\frac{d(N)}{N^{\epsilon}}>\frac{d\left(N^{\prime}\right)}{\left(N^{\prime}\right)^{\epsilon}},
$$

for all values of N^{\prime} greater than N, N and N^{\prime} in the two inequalities being of the form (242), and proceed as in § 33, we can shew that

$$
\begin{equation*}
d(N) \leq N^{1 / x} \frac{\left(1+c_{1}\right)^{\pi\left\{\left(1+c_{1}\right)^{x / c_{1}}\right\}}}{e^{\left(c_{1} / x\right) \vartheta\left\{\left(1+c_{1}\right)^{x / c_{1}}\right\}}} \frac{\left(\frac{1+c_{1}+c_{2}}{1+c_{1}}\right)^{\pi\left\{\left(\frac{1+c_{1}+c_{2}}{1+c_{1}}\right)^{x / c_{2}}\right\}}}{\left.e^{\left(c_{2} / x\right) \vartheta\left\{\left(\frac{1+c_{1}+c_{2}}{1+c_{1}}\right)^{x / c_{2}}\right.}\right\}} \ldots, \tag{243}
\end{equation*}
$$

for all values of x, and for all values of N of the form (242). From we can shew, by arguments similar to those of $\S 38$, that N must be of the form

$$
\begin{equation*}
e^{c_{1} \vartheta\left\{\left(1+c_{1}\right)^{x / c_{1}}\right\}+c_{2} \vartheta\left\{\left(\frac{1+c_{1}+c_{2}}{1+c_{1}}\right)^{x / c_{2}}\right\}+c_{3} \vartheta\left\{\left(\frac{1+c_{1}+c_{2}+c_{3}}{1+c_{1}+c_{2}}\right)^{x / c_{3}}\right\}+\cdots,} \tag{244}
\end{equation*}
$$

and $d(N)$ of the form

$$
\left.\left(1+c_{1}\right)^{\pi\left\{\left(1+c_{1}\right)^{\frac{x}{c_{1}}}\right.}\right\}\left(\frac{1+c_{1}+c_{2}}{1+c_{1}}\right)^{\pi\left\{\left(\frac{1+c_{1}+c_{2}}{1+c_{1}}\right)^{\frac{x}{c_{2}}}\right\}}\left(\frac{1+c_{1}+c_{2}+c_{3}}{1+c_{1}+c_{2}}\right)^{\pi\left\{\left(\frac{1+c_{1}+c_{2}+c_{3}}{1+c_{1}+c_{2}}\right)^{\frac{x}{c_{3}}}\right\}}
$$

From (244) and $\left(244^{\prime}\right)$ we can find the maximum order of $d(N)$, as in $\S 43$.
47. We shall now consider the order of $d(N)$ for some special forms of N. The simplest case is that in which N is of the form

$$
2 \cdot 3 \cdot 5 \cdot 7 \cdots p
$$

so that

$$
\log N=\vartheta(p),
$$

and

$$
d(N)=2^{\pi(p)} .
$$

It is easy to shew that

$$
\begin{equation*}
d(N)=2^{L i(\log N)-R(\log N)+O\left\{\frac{\sqrt{\log N)}}{(\log \log N)^{3}}\right\}} . \tag{245}
\end{equation*}
$$

In this case $d(N)$ is exactly a power of 2 , and this naturally suggests the question: what is the maximum order of $d(N)$ when $d(N)$ is exactly a power of 2 ?
It is evident that, if $d(N)$ is a power of 2 , the indices of the prime divisors of N cannot be any other numbers except $1,3,7,15,31, \ldots$; an so in order that $d(N)$ should be of maximum order, N must be of the form

$$
e^{\vartheta\left(x_{1}\right)+2 \vartheta\left(x_{2}\right)+4 \vartheta\left(x_{3}\right)+8 \vartheta\left(x_{4}\right)+\cdots},
$$

and $d(N)$ of the form

$$
2^{\pi\left(x_{1}\right)+\pi\left(x_{2}\right)+\pi\left(x_{3}\right)+\cdots} .
$$

It follows from $\S 46$ that, in order that $d(N)$ should be of maximum order N, must be of the form

$$
\begin{equation*}
e^{\vartheta(x)+2 \vartheta(\sqrt{x})+4 \vartheta\left(x^{\frac{1}{4}}\right)+8 \vartheta\left(x^{\frac{1}{8}}\right)+\cdots} \tag{246}
\end{equation*}
$$

and $d(N)$ of the form

$$
\begin{equation*}
2^{\pi(x)+\pi(\sqrt{x})+\pi\left(x^{\frac{1}{4}}\right)+\pi\left(x^{\frac{1}{8}}\right)+\cdots} \tag{247}
\end{equation*}
$$

Hence the maximum order of $d(N)$ can easily be shewn to be

$$
\begin{equation*}
\left.2^{L i(\log N)+\frac{4 \sqrt{(\log N)}}{(\log \log N)^{2}}-R(\log N)+O\left\{\frac{\sqrt{(\log N)}}{(\log \log N)^{3}}\right.}\right\} . \tag{248}
\end{equation*}
$$

It is easily seen from (246) that the least number having 2^{n} divisors is

$$
\begin{equation*}
2 \cdot 3 \cdot 4 \cdot 5 \cdot 7 \cdot 9 \cdot 11 \cdot 13 \cdot 16 \cdot 17 \cdot 19 \cdot 23 \cdot 25 \cdot 29 \cdots \text { to } n \text { factors, } \tag{249}
\end{equation*}
$$

where $2,3,4,5,7, \ldots$ are the natural primes, their squares, fourth powers and so on, arranged according to order of magnitude.
48. We have seen that the last indices of the prime divisors of N must be 1 , if $d(N)$ is of maximum order. Now we shall consider the maximum order of $d(N)$ when the indices of the prime divisors of N are never less than an integer n. In the first place, in order that $d(N)$ should be of maximum order, N must be of the form

$$
e^{n \vartheta\left(x_{1}\right)+\vartheta\left(x_{2}\right)+\vartheta\left(x_{3}\right)+\cdots,}
$$

and $d(N)$ of the form

$$
(1+n)^{\pi\left(x_{1}\right)}\left(\frac{2+n}{1+n}\right)^{\pi\left(x_{2}\right)}\left(\frac{3+n}{2+n}\right)^{\pi\left(x_{3}\right)} \cdots .
$$

It follows from $\S 46$ that N must be of the form

$$
\begin{equation*}
e^{n \vartheta\left\{(1+n)^{x / n}\right\}+\vartheta\left\{\left(\frac{2+n}{1+n}\right)^{x}\right\}+\vartheta\left\{\left(\frac{3+n}{2+n}\right)^{x}\right\}+\cdots,} \tag{250}
\end{equation*}
$$

and $d(N)$ of the form

$$
\begin{equation*}
(1+n)^{\pi\left\{(1+n)^{x / n}\right\}}\left(\frac{2+n}{1+n}\right)^{\pi\left\{\left(\frac{1+n}{1+n}\right)^{x}\right\}}\left(\frac{3+n}{2+n}\right)^{\pi\left\{\left(\frac{3+n}{2+n}\right)^{x}\right\}} \ldots \tag{251}
\end{equation*}
$$

Then, by arguments similar to those of $\S 43$, we can shew that the maximum order of $d(N)$ is

$$
\begin{equation*}
(n+1)^{L i\{(1 / n) \log N\}+\phi(N)}, \tag{252}
\end{equation*}
$$

where

$$
\begin{aligned}
\phi(N)= & \left\{\frac{\log (n+2)}{\log (n+1)}-1\right\} \text { Li }\left\{\left(\frac{1}{n} \log N\right)^{n \frac{\log (n+2)}{\log (n-1)}-n}\right\} \\
& \left.-\frac{\left(\frac{1}{n} \log N\right)^{n \frac{\log (n+2)}{\log (n-1)}-n}}{n \log \left(\frac{1}{n} \log N\right)}-R\left(\frac{1}{n} \log N\right)+\right)\left\{\frac{\sqrt{(\log N)}}{(\log \log N)^{3}}\right\} .
\end{aligned}
$$

if $n \geq 3$, it is easy to verify that

$$
n \frac{\log (n+2)}{\log (n+1)}-n<\frac{1}{2}
$$

and so (252) reduces to

$$
\begin{equation*}
(n+1)^{\operatorname{Li}\{(1 / n) \log N\}-R\{(1 / n) \log N\}+O\left\{\frac{\sqrt{(\log N)}}{(\log \log N)^{3}}\right\}}, \tag{253}
\end{equation*}
$$

provided that $n \geq 3$.
49. Let us next consider the maximum order of $d(N)$ when N is a perfect nth power. In order that $d(N)$ should be of maximum order, N must be of the form

$$
e^{n \vartheta\left(x_{2}\right)+n \vartheta\left(x_{2}\right)+n \vartheta\left(x_{3}\right)+\cdots}
$$

and $d(N)$ of the form

$$
(1+n)^{\pi\left(x_{1}\right)}\left(\frac{1+2 n}{1+n}\right)^{\pi\left(x_{2}\right)}\left(\frac{1+3 n}{1+2 n}\right)^{\pi\left(x_{3}\right)} \cdots
$$

It follows from $\S 46$ that N must be of the form

$$
\begin{equation*}
e^{n \vartheta\left\{(1+n)^{x}\right\}+n \vartheta\left\{\left(\frac{1+2 n}{1+n}\right)^{x}\right\}+n \vartheta\left\{\left(\frac{1+3 n}{1+2 n}\right)^{x}\right\}+\cdots}, \tag{254}
\end{equation*}
$$

and $d(N)$ of the form

$$
\begin{equation*}
(1+n)^{p i\left\{(1+n)^{x}\right\}}\left(\frac{1+2 n}{1+n}\right)^{\pi\left\{\left(\frac{1+2 n}{1+n}\right)^{x}\right\}}\left(\frac{1+3 n}{1+2 n}\right)^{\pi\left\{\left(\frac{1+3 n}{1+2 n}\right)^{x}\right\}} \ldots \tag{255}
\end{equation*}
$$

Hence we can shew that the maximum order of $d(N)$ is

$$
\begin{equation*}
(n+1)^{\operatorname{Li}\{(1 / n) \log N\}-R\{(1 / n) \log N\}+O\left\{\frac{\sqrt{(\log N)}}{(\log \log N)^{3}}\right\}}, \tag{256}
\end{equation*}
$$

provided that $n>1$.
50. Let $l(N)$ denote the least common multiple of the first N natural numbers. Then it can easily be shewn that

$$
\begin{equation*}
l(N)=2^{[\log N \log 2]} \cdot 3^{[\log N / \log 3]} \cdot 5^{[\log N / \log 5]} \ldots p, \tag{257}
\end{equation*}
$$

where p is the largest prime not greater than N. From this we can shew that

$$
\begin{equation*}
l(N)=e^{\vartheta(N)+\vartheta(\sqrt{N})+\vartheta\left(N^{\frac{1}{3}}\right)+\vartheta\left(N^{\frac{1}{4}}\right)+\cdots} ; \tag{258}
\end{equation*}
$$

and so

$$
\begin{equation*}
d\{l(N)\}=2^{\pi(N)}\left(\frac{3}{2}\right)^{\pi(N)}\left(\frac{4}{3}\right)^{\pi\left(N^{\frac{1}{3}}\right)} \cdots . \tag{259}
\end{equation*}
$$

From (258) and (259) we can shew that, if N is of the form $l(M)$, then

$$
\begin{equation*}
d(N)=2^{L i(\log N)+\phi(N)}, \tag{260}
\end{equation*}
$$

where

$$
\phi(N)=\frac{\log \left(\frac{9}{8}\right)}{\log 2} \frac{\sqrt{(\log N)}}{\log \log N}+\frac{4 \log \left(\frac{3}{2}\right)}{(\log \log N)^{2}}-R(\log N)+O\left\{\frac{\sqrt{(\log N)}}{(\log \log N)^{3}}\right\}
$$

It follows from (258) that

$$
\begin{equation*}
l(N)=e^{N+O\left\{\sqrt{N(\log)^{2}}\right\}} \tag{261}
\end{equation*}
$$

and from (259) that

$$
\begin{equation*}
d\{l(N)\}=2^{L i(n)+O(\sqrt{N \log N})} . \tag{262}
\end{equation*}
$$

51. Finally, we shall consider the number of divisors of N ! It is easily seen that

$$
\begin{equation*}
N!=2^{a_{2}} \cdot 3^{a_{3}} \cdot 5^{a_{5}} \cdots p^{a_{p}} \tag{263}
\end{equation*}
$$

where p is the largest prime not greater than N, and

$$
a_{\lambda}=\left[\frac{N}{\lambda}\right]+\left[\frac{N}{\lambda^{2}}\right]+\left[\frac{N}{\lambda^{3}}\right]+\cdots .
$$

It is evident that the primes greater than $\frac{1}{2} N$ and not exceeding N appear once in $N!$, the primes greater than $\frac{1}{3} N$ and not exceeding $\frac{1}{2} N$ appear twice, and so on up to those greater than $N /[\sqrt{N}]$ and not exceeding $N /(\sqrt{N}]-1)$, appearing $[\sqrt{N}]-1$ times*. The indices of the smaller primes cannot be specified so simply. Hence it is clear that

$$
\begin{equation*}
N!=e^{\vartheta(N)+\vartheta\left(\frac{1}{2} N\right)+\vartheta\left(\frac{1}{3} N\right)+\cdots+\vartheta\left(\frac{N}{[\sqrt{N}]-1}\right)} \times 2^{a_{2}} \cdot 3^{a_{3}} \cdot 5^{a_{5}} \cdots \varpi^{a_{\varpi}} \tag{264}
\end{equation*}
$$

where ϖ is the largest prime not greater than \sqrt{N}, and

$$
a_{\lambda}-1+[\sqrt{N}]=\left[\frac{N}{\lambda}\right]+\left[\frac{N}{\lambda^{2}}\right]+\left[\frac{N}{\lambda^{3}}\right]+\cdots .
$$

From (264) we see that

$$
\begin{align*}
d(N!)= & 2^{\pi(N)}\left(\frac{3}{2}\right) \pi^{\pi\left(\frac{1}{2} N\right)}\left(\frac{4}{3}\right)^{\pi\left(\frac{1}{3} N\right)} \cdots \text { to }[\sqrt{N}]-1 \text { factors } \\
& \times e^{O\left\{\left\{\log \left(1+a_{2}\right)+\log \left(1+a_{3}\right)+\cdots+\log \left(1+a_{\varpi}\right)\right\}\right.} \\
= & 2^{\pi(N)}\left(\frac{3}{2}\right)^{\pi\left(\frac{1}{2} N\right)}\left(\frac{4}{3}\right)^{\pi\left(\frac{1}{3} N\right)} \cdots \text { to }[\sqrt{N}]-1 \text { factors } \\
& \times e^{O\left\{\varpi \log \left(1+a_{2}\right)\right\}} \\
= & 2^{L i(N)}\left(\frac{3}{2}\right)^{L i\left(\frac{1}{2} N\right)}\left(\frac{4}{3}\right)^{L i\left(\frac{1}{3} N\right)} \cdots \text { to }[\sqrt{N}] \text { factors } \\
& \times e^{O(\sqrt{N \log N)} .} \tag{265}
\end{align*}
$$

Since

$$
L i(N)=\frac{N}{\log N}+O\left\{\frac{N}{(\log N)^{2}}\right\}
$$

[^11]we see that
\[

$$
\begin{equation*}
d(N!)=C^{\frac{N}{\log N}+O\left\{\frac{N}{(\log N)^{2}}\right\}}, \tag{266}
\end{equation*}
$$

\]

where

$$
C=(1+1)^{1}\left(1+\frac{1}{2}\right)^{\frac{1}{2}}\left(1+\frac{1}{3}\right)^{\frac{1}{3}}\left(1+\frac{1}{4}\right)^{\frac{1}{4}} \ldots .
$$

From this we can easily deduce that, if N is of the form M !, then

$$
\begin{equation*}
d(N)=C^{\frac{\log N}{(\log \log N)^{2}}+\frac{2 \log N \log \log \log N}{(\log \log N)^{3}}+O\left\{\frac{\log N}{(\log \log N)^{3}}\right\},} \tag{267}
\end{equation*}
$$

where C is the same constant as in (266).
52. It is interesting in this connection to shew how, by considering numbers of certain special forms, we can obtain lower limits for the maximum orders of the iterated functions $d d(n)$ and $d d d(n)$. By supposing that

$$
N=2^{2-1} \cdot 3^{3-1} \cdots p^{p-1}
$$

we can shew that

$$
\begin{equation*}
d d(n)>4^{\frac{\sqrt{(2 \log n)}}{\log \log n}} \tag{268}
\end{equation*}
$$

for an infinity of values of n. By supposing that

$$
N=2^{2^{a_{2}}-1} \cdot 3^{3^{a_{3}}-1} \cdots p^{p^{a_{p}}-1}
$$

where

$$
a_{\lambda}=\left[\frac{\log p}{\log \lambda}\right]-1
$$

we can shew that

$$
\begin{equation*}
d d d(n)>(\log n)^{\log \log \log \log n} \tag{269}
\end{equation*}
$$

for an infinity of values of n.

[^0]: This paper, as it appeared orginally, is not complete. Since the London Mathematical Society was in some financial difficulty at that time, Ramanujan had to suppress part of what he had written in order to save expense. The unpublished part of the manuscript with annotation has been reproduced: Highly Composite Numbers by Srinivasa Ramanujan, Jean-Louis Nicolas, Guy Robin, The Ramanujan Journal, Volume 1, Issue 2, 1997, pp. 119 - 153.

[^1]: * Werke, Vol.2, p. 49.
 ${ }^{\dagger} f=O(\phi)$ means that a constant exists such that $|f|<K \phi: f=o(\phi)$ means that $f / \phi \rightarrow 0$.
 ${ }^{\ddagger}$ Crelle's Journal, Vol. 126. p. 241.
 §Göttinger Nachrichten, 1912.
 ${ }^{\text {© }}$ Comptes Rendus May 10, 1915.

[^2]: * Arkiv för Matematik, Vol. 3, No. 18
 ${ }^{\dagger}$ The theorem that $\pi(x) \sim \frac{x}{\log x}, \pi(x)$ being the number of primes not exceeding x.

[^3]: * Werke, Vol. 1, p. 635.

[^4]: *See Landau, Handbuch, pp. 71 et seq.

[^5]: ${ }^{*}$ It can be proved by elementary methods that, if $x \geq 1$, there is at least one prime p such that $x<p \leq 2 x$. This result is known as Bertrand's Postulate: for a proof, see Landau, Handbuch, p. 89. It follows at once that $P_{1}<p_{1}^{2}$, if $p_{1}>2$; and the inequality is obviously true when $p_{1}=2$. Some similar results used later in this and the next section may be proved in the same kind of way. It is for some purposes sufficient to know that there is always a prime p such that $x<p<3 x$, and the proof of this is easier than that of Bertrand's Postulate. These inequalities are enough, for example, to shew that

 $$
 \log P_{1}=\log p_{1}+O(1) .
 $$

[^6]: * $[x]$ denotes as usual the integral part of x.
 ${ }^{\dagger}$ That is to say all prime values of λ and ν, since λ in a_{λ} is be definition prime.

[^7]: ${ }^{*} f \neq o(\phi)$ is to be understood as meaning that $|f|>K \phi$, where K is a constant, and $f \neq O(\phi)$ as meaning that $|f| / \phi \rightarrow \infty$. They are not the mere nagations of $f=o(\phi)$ and $f=O(\phi)$.

[^8]: ${ }^{*}$ We can with a little trouble replace all equations of the type $f=O(\phi)$ which occur by inequalities of the type $|f|<K \phi$, with definite numerical constants. This would enable us to extend all the different ranges a little. For example, an equation true for

 $$
 \log \lambda \neq O \sqrt{\left(\log p_{1}\right)}
 $$

 would be replaced by an inequality true for $\log \lambda>K \sqrt{\left(\log p_{1}\right)}$, where K is definite constant, and similarly $\log \lambda=o \sqrt{\left(\log p_{1}\right)}$ would be replaced by $\log \lambda<k \sqrt{\left(\log p_{1}\right)}$.

[^9]: ${ }^{*}$ More precisely $\varpi \sim a_{2}$. But this involves the assumption that two consecutive primes are asymptotically equivalent. This follows at once from the prime number theorem. It appears probable that such a result cannot really be as deep as the prime number theorem, but nobody has succeeded up to now in proving it by elementary reasoning.

[^10]: *See Landau, Handbuch, p.139.

[^11]: ${ }^{*}$ Strictly speaking, this is true only when $N \geq 4$.

