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1. A recent paper by Mr Hardy and myself † contains a table, calculated by Major MacMa-
hon, of the values of p(n), the number of unrestricted partitions of n, for all values of n from
1 to 200. On studying the numbers in this table I observed a number of curious congruence
properties, apparently satisfied by p(n). Thus
(1) p(4), p(9), p(14), p(19), · · · ≡ 0 (mod 5),
(2) p(5), p(12), p(19), p(26), · · · ≡ 0 (mod 7),
(3) p(6), p(17), p(28), p(39), · · · ≡ 0 (mod 11),
(4) p(24), p(49), p(74), p(99), · · · ≡ 0 (mod 25),
(5) p(19), p(54), p(89), p(124), · · · ≡ 0 (mod 35),
(6) p(47), p(96), p(145), p(194), · · · ≡ 0 (mod 49),
(7) p(39), p(94), p(149), · · · ≡ 0 (mod 55),
(8) p(61), p(138), · · · ≡ 0 (mod 77),
(9) p(116), · · · ≡ 0 (mod 121),
(10) p(99), · · · ≡ 0 (mod 125).

From these data I conjectured the truth of the following theorem: if δ = 5a7b11c and
24λ ≡ 1 (mod δ) then

p(λ), p(λ+ δ), p(λ+ 2δ), · · · ≡ 0 (mod δ).

This theorem is supported by all the available evidence; but I have not yet been able to
find a general proof.
I have, however, found quite simple proofs of the theorems expressed by (1) and (2), viz.

(1) p(5m+ 4) ≡ 0 (mod 5)

and

(2) p(7m+ 5) ≡ 0 (mod 7).

From these

(5) p(35m+ 19) ≡ 0 (mod 35)

follows at once as a corollary. These proofs I give in § 2 and § 3. I can also prove

(4) p(25n + 24) ≡ 0 (mod 25)

∗[See also Ramanujan’s posthumous paper “Congruence properties of partitions” in theMath. Zeitschrift,
[No.30 of this volume].

†G. H. Hardy and S.Ramanujan, “Asymptotic formulæ in Combinatory Analysis,” Proc. London Math.

Soc., Ser. 2, Vol. XVII, 1918, pp. 75 – 115 (Table IV, pp. 114 – 115) [No.36 of this volume].
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and

(6), p(49n + 47) ≡ 0 (mod 49),

but only in a more recondite way, which I sketch in § 4.

2. Proof of (1). We have

(11) x{(1− x)(1 − x2)(1− x3) · · ·}4

= x(1− 3x+ 5x3 − 7x6 + · · ·)(1 − x− x2 + x5 + · · ·)

=
∑

(−1)µ+ν(2µ+ 1)x1+
1

2
µ(µ+1)+ 1

2
ν(3ν+1),

the summation extending from µ = 0 to µ = ∞ and from ν = −∞ to ν = ∞.

Now if

1 + 1
2µ(µ+ 1) + 1

2ν(3ν + 1) ≡ 0 (mod 5),

then

8 + 4µ(µ + 1) + 4ν(3ν + 1) ≡ 0 (mod 5),

and therefore

(12) (2µ + 1)2 + 2(ν + 1)2 ≡ 0 (mod 5).

But (2µ + 1)2 is congruent to 0,1 or 4, and 2(ν + 1)2 to 0, 2, or 3. Hence it follows from
(12) that 2µ+ 1 and ν + 1 are both multiplies of 5. That is to say, the coefficient of x5n in
(11) is a multiple of 5.

Again, all the coefficients in (1 − x)−5 are multiples of 5, except those of 1, x5, x10, . . . ,
which are congruent to 1: that is to say

1

(1− x)5
≡

1

1− x5
(mod 5),

or
1− x5

(1− x)5
≡ 1 (mod 5).

Thus all the coefficients in

(1− x5)(1− x10)(1− x15) · · ·

{(1 − x)(1− x2)(1 − x3) · · ·}5

(except the first) are multiples of 5. Hence the coefficient of x5n in

x(1− x5)(1− x10) · · ·

(1− x)(1 − x2)(1− x3) · · ·
= x{(1 − x)(1− x2) · · ·}4

(1− x5)(1− x10) · · ·

{(1− x)(1− x2) · · ·}5
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is a multiple of 5. And hence, finally, the coefficient of x5n in

x

(1− x)(1 − x2)(1− x3) · · ·

is a multiple of 5; which proves (1).

3. Proof of (2). The proof of (2) is very similar. We have

(13) x2{(1 − x)(1 − x2)(1− x3) · · ·}6

= x2(1− 3x+ 5x3 − 7x6 + · · ·)2

=
∑

(−1)µ+ν(2µ + 1)(2ν + 1)x2+
1

2
µ(µ+1)+ 1

2
ν(ν+1),

the summation now extending from 0 to ∞ for both µ and ν. If

2 + 1
2µ(µ + 1) + 1

2ν(ν + 1) ≡ 0 (mod 7),

then 16 + 4µ(µ+ 1) + 4ν(ν + 1) ≡ (mod 7),

(2µ + 1)2 + (2ν + 1)2 ≡ 0 (mod 7),

and 2µ+1 and 2ν+1 are both divisible by 7. Thus the coefficient of x7n in (13) is divisible
by 49.
Again, all the coefficients in

(1− x7)(1− x14)(1− x21) · · ·

{(1 − x)(1− x2)(1 − x3) · · ·}7

(except the first) are multiples of 7. Hence (arguing as in § 2) we see that the coefficient of
x7n in

x2

(1− x)(1 − x2)(1− x3) · · ·

is a multiple of 7; which proves (2). As I have already pointed out, (5) is a corollary.

4. The proofs of (4) and (6) are more intricate, and in order to give them I have to consider
a much more difficult problem. viz. that of expressing

p(λ) + p(λ+ δ)x+ p(λ+ 2δ)x2 + · · ·

in terms of Theta-functions, in such a manner as to exhibit explicitly the common factors
of the coefficients, if such common factors exist. I shall content myself with sketching the
method of proof, reserving any detailed discussion of it for another paper.
It can be shewn that

(14)
(1− x5)(1− x10)(1− x15) · · ·

(1− x
1

5 )(1− x
2

5 )(1− x
3

5 ) · · ·
=

1

ξ−1 − x
1

5 − ξx
2

5

=
ξ−4 − 3xξ + x

1

5 (ξ−3 + 2xξ2) + x
2

5 (2ξ−2 − xξ3) + x
3

5 (3ξ−1 + xξ4) + 5x
4

5

ξ−5 − 11x− x2ξ5
,



268 Paper 25

where

ξ =
(1− x)(1− x4)(1− x6)(1 − x9) · · ·

(1− x2)(1− x3)(1 − x7)(1− x8) · · ·
,

the indices of the powers of x, in both numerator and denominator of ξ, forming two
arithmetical progressions with common difference 5. It follows that

(15) (1− x5)(1− x10)(1− x15) · · · {p(4) + p(9)x+ p(14)x2 + · · ·} =
5

ξ−5 − 11x− x2ξ5
.

Again, if in (14) we substitute ωx
1

5 , ω2x
1

5 , ω3x
1

5 , and ω4x
1

5 , where ω5 = 1, for x
1

5 , and
multiply the resulting five equations, we obtain

(16)

{

(1− x5)(1− x10)(1− x15) · · ·

(1− x)(1 − x2)(1− x3) · · ·

}6

=
1

ξ−5 − 11x− x2ξ5
.

From (15) and (16) we deduce

(17) p(4) + p(9)x+ p(14)x2 + · · · = 5
{(1 − x5)(1− x10)(1− x15) · · ·}5

{(1− x)(1 − x2)(1− x3) · · ·}6
;

from which it appears directly that p(5m+ 4) is divisible by 5.
The corresponding formula involving 7 is

(18) p(5) + p(12)x + p(19)x2 + · · · = 7
{(1 − x7)(1 − x14)(1 − x21) · · ·}3

{(1 − x)(1− x2)(1 − x3) · · ·}4

+49x
{(1 − x7)(1 − x14)(1 − x21) · · ·}7

{(1− x)(1− x2)(1− x3) · · ·}8
,

which shews that p(7m+ 5) is divisible by 7.
From (16) it follows that

p(4)x+ p(9)x2 + p(14)x3 + · · ·

5{(1 − x5)(1 − x10)(1 − x15) · · ·}4

=
x

(1− x)(1− x2)(1− x3) · · ·

{(1− x5)(1− x10)(1− x15) · · ·

{(1− x)(1− x2)(1 − x3) · · ·}5
.

As the coefficient of x5n on the right-hand side is a multiple of 5, it follows that p(25m+24)
is divisible by 25.
Similarly

p(5)x + p(12)x2 + p(19)x3 + · · ·

7{(1 − x7)(1 − x14)(1 − x21) · · ·}2

= x(1− 3x+ 5x3 − 7x6 + · · ·)
(1− x7)(1− x14) · · ·

{(1 − x)(1− x2) · · ·}7
+ 7x2

{(1 − x7)(1− x14) · · ·}5

{(1 − x)(1− x2) · · ·}8
;

from which it follows that p(49m+ 47) is divisible by 49.
Another proof of (1) and (2) has been found by Mr. H. B. C. Darling, to whom my conjecture had been

communicated by Major MacMahon. This proof will also be published in these Proceedings. I have since

found proofs of (3), (7) and (8).


