Some properties of p(n), the number of partitions of n-
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1. A recent paper by Mr Hardy and myself T contains a table, calculated by Major MacMa-
hon, of the values of p(n), the number of unrestricted partitions of n, for all values of n from
1 to 200. On studying the numbers in this table I observed a number of curious congruence
properties, apparently satisfied by p(n). Thus

(1) pA),  pO), p(14), p(19), =0 (mod 5),
(2)  pG), p(12), p(19), p(26), =0 (mod 7),
(3)  p6),  p(17), p(28), p(39), =0 (mod 11),
(4)  p(24), p49), p(74), p(99), =0 (mod 25),
(5)  p(19), p(54), p(89), p(124), =0 (mod 35),
(6) p(47), p(96), p(145), p(194), =0 (mod 49),
(7)) p39), p(94), p(149), --- =0 (mod 55),
(8)  p(61), p(138), --- =0 (mod 77),
(9) p(116), --- =0 (mod 121),
(10)  p(99), =0 (mod 125)

From these data I conjectured the truth of the following theorem: if § = 5%7°11¢ and
24N =1 (mod 0) then

p(A), p(A+96), p(A+20),--- =0 (mod 9).

This theorem is supported by all the available evidence; but I have not yet been able to
find a general proof.
I have, however, found quite simple proofs of the theorems expressed by (1) and (2), viz.

(1) p(5m+4) =0 (mod 5)
and

(2) p(Tm+5)=0 (mod 7).
From these

(5) p(35m +19) =0 (mod 35)

follows at once as a corollary. These proofs I give in § 2 and § 3. I can also prove

(4) p(25m+24) =0 (mod 25)

*[See also Ramanujan’s posthumous paper “Congruence properties of partitions” in the Math. Zeitschrift,
[No.30 of this volume].

fG. H. Hardy and S.Ramanujan, “Asymptotic formulee in Combinatory Analysis,” Proc. London Math.
Soc., Ser. 2, Vol. XVII, 1918, pp. 75 — 115 (Table IV, pp. 114 — 115) [No.36 of this volume].
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(6), p(49n +47) =0 (mod 49),
but only in a more recondite way, which I sketch in § 4.

2. Proof of (1). We have

1) {1 -2)(1—a?)(1 -2}
:x(1—3x+5x3—7x6+"‘)(1—x—a:2+a:5+"‘)
= N (C)EF 2+ gt sl DG

the summation extending from p = 0 to yu = oo and from v = —oo to v = .
Now if

1+ 4u(u+1)+3vBr+1)=0 (mod 5),
then
8+4u(p+1)+4v(Br+1) =0 (mod 5),

and therefore
(12) 2u+1)*+2(r+1)>=0 (mod 5).

But (2u + 1)? is congruent to 0,1 or 4, and 2(v + 1)? to 0, 2, or 3. Hence it follows from
(12) that 2u+ 1 and v + 1 are both multiplies of 5. That is to say, the coefficient of #°" in
(11) is a multiple of 5.

Again, all the coefficients in (1 — x)
which are congruent to 1: that is to say

-5 10

are multiples of 5, except those of 1,2° 219, ...,

1 1
(1—x)551—x5 (mod 5),
or .
11—z
—— =1 d b).
e (mod 5)

Thus all the coefficients in

(1—2%)(1 — 29 (1 — 219) ...
{A =) —2)(1 —a?)-- -}

(except the first) are multiples of 5. Hence the coefficient of 5" in
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is a multiple of 5. And hence, finally, the coefficient of 25" in

(1—2)1—22)(1—a3)---

is a multiple of 5; which proves (1).

3. Proof of (2). The proof of (2) is very similar. We have
(13) 2?{(1 - 2)(1 - 2®)(1 — ) }°
= 2%(1 — 3z +52% — 720 4+ .. .)?
_ Z(—l)’””(?u +1)(20 + 1)w2+%u(u+l)+%u(u+l)7
the summation now extending from 0 to oo for both p and v. If
24 3pu(p+1)+2iv(v+1)=0 (mod7),
then 16+ 4p(p+1)+4v(v+1)= (mod7),
u+1)2+2v+1)*=0 (mod 7),

and 2i1+ 1 and 2v + 1 are both divisible by 7. Thus the coefficient of ™ in (13) is divisible
by 49.
Again, all the coefficients in

(1—27)(1 — 21 —22). ..

{A=2)A —2?)(1 —a?)- -}
(except the first) are multiples of 7. Hence (arguing as in § 2) we see that the coefficient of
2™ in

72

1-2)1—22H)(1—a3)---
is a multiple of 7; which proves (2). As I have already pointed out, (5) is a corollary.

4. The proofs of (4) and (6) are more intricate, and in order to give them I have to consider
a much more difficult problem. viz. that of expressing

p(\) + p(\ + &)z + p(A + 26)% + - --

in terms of Theta-functions, in such a manner as to exhibit explicitly the common factors
of the coefficients, if such common factors exist. I shall content myself with sketching the
method of proof, reserving any detailed discussion of it for another paper.

It can be shewn that

(14) (1—3351)(1—3312)(1—33135)“' = 11 2
(1—a5)(1—25)1—a5)--- &1 —a5—Eas
€4 = 3uE 4+ w5 (£73 + 22€2) + 25 (2672 — 283) + 25 (3671 + x¢) + bas
£75 — 11x — 225 ’
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where
1—2)1—2H1 —251 -2

S G s G g Qs S
the indices of the powers of x, in both numerator and denominator of &, forming two
arithmetical progressions with common difference 5. It follows that

5

(15) (1—2)(1 =21 —2') - {p4) + p(9z + p(14)a? + -} = €5 11o — 226

3 5

C e . 1 1 1 1 1
Again, if in (14) we substitute w3, w?z5,w3r5, and w25, where w® = 1, for x5, and

multiply the resulting five equations, we obtain

16) (1251 -2 -2 " 1
(1—2)1—22)(1—a3)--- T — 11 — 2265

From (15) and (16) we deduce

{1 —2”)1 -2 (1 —2®)--}°
(a1 %) 30

from which it appears directly that p(5m + 4) is divisible by 5.

The corresponding formula involving 7 is

(17) p(4) +p(9z +p(14)x* +--- =5

{(1—aT)(1 - )1 —2?).. P
(-2
{(1—aT) (1 —a)(1 = a?). )7
-1

(18) p(5) +p(12)z + p(19)2® +--- =7

+49x

which shews that p(7m + 5) is divisible by 7.
From (16) it follows that
p(d)z + p(9)x? + p(14)a3 + - --
S —a%) (L — 01— 2 -}
x {(1—2%(1 — 2191 —2) ...
(=) -1~ (T -0~ )1~ )
As the coefficient of 2°™ on the right-hand side is a multiple of 5, it follows that p(25m +24)
is divisible by 25.
Similarly
p(5)z + p(12)2? + p(19)x3 + - -
(=) (1 — a1 — %) )2

(L)) (2t
xz .

s R G (e (o e

from which it follows that p(49m + 47) is divisible by 49.

Another proof of (1) and (2) has been found by Mr. H. B. C. Darling, to whom my conjecture had been

=2(1 -3z +52° - 2%+ )

communicated by Major MacMahon. This proof will also be published in these Proceedings. 1 have since
found proofs of (3), (7) and (8).



