Congruence properties of partitions

Proceedings of the London Mathematical Society, 2, XVIII, 1920, Records for 13 March 1919

In a paper published recently in the Proceedings of the Cambridge Philosophical Society*, I proved a number of arithmetical properties of $p(n)$, the number of unrestricted partitions of n, and in particular that

$$
p(5 n+4) \equiv 0 \quad(\bmod 5)
$$

and

$$
p(7 n+5) \equiv 0 \quad(\bmod 7)
$$

Alternative proofs of these two theorems were found afterwards by Mr. H. B. C. Darling ${ }^{\dagger}$. I have since found another method which enables me to prove all these properties and a variety of others, of which the most striking is

$$
p(11 n+6) \equiv 0 \quad(\bmod 11) .
$$

There are also corresponding properties in which the moduli are powers of 5,7 , or 11 ; thus

$$
\begin{gathered}
p(25 n+24) \equiv 0 \quad(\bmod 25), \\
p(49 n+19), \quad p(49 n+33), \quad p(49 n+40), \quad p(49 n+47) \equiv 0 \quad(\bmod 49), \\
p(121 n+116) \equiv 0 \quad(\bmod 121) .
\end{gathered}
$$

It appears that there are no equally simple properties for any moduli involving primes other than these three.
The function $\tau(n)$ defined by the equation

$$
\sum_{1}^{\infty} \tau(n) x^{n}=x\left\{(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right) \cdots\right\}^{24}
$$

also possesses very remarkable arithmetical properties. Thus

$$
\begin{gathered}
\tau(5 n) \equiv 0 \quad(\bmod 5) \\
\tau(7 n), \quad \tau(7 n+3), \quad \tau(7 n+5), \quad \tau(7 n+6) \equiv 0 \quad(\bmod 7),
\end{gathered}
$$

while

$$
\tau(23 n+\nu) \equiv 0 \quad(\bmod 23)
$$

if ν is any one of the numbers

$$
5,7,10,11,14,15,17,19,20,21,22 .
$$

[^0]
[^0]: *Vol. XIX, 1919, pp. $207-210$ [No. 25 of this volume; see also No. 30].
 ${ }^{\dagger}$ Ibid., pp. 217, 218.

