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1. Let

(1.11) P = 1− 24

(

x

1− x
+

2x2

1− x2
+

3x3

1− x3
+ · · ·

)

,

(1.12) Q = 1 + 240

(

x

1− x
+

23x2

1− x2
+

33x3

1− x3
+ · · ·

)

,

(1.13) R = 1− 504

(

x

1− x
+

25x2

1− x2
+

35x3

1− x3
+ · · ·

)

,

(1.2) f(x) = (1− x)(1 − x2)(1− x3) · · · .

Then it is well known that

(1.3) f(x) = 1− x− x2 + x5 + x7 − · · · = 1 +
∞
∑

n=1

(−1)n(x
1

2
n(3n−1) + x

1

2
n(3n+1)),

∗Srinivasa Ramanujan, Fellow of Trinity College, Cambridge, and of the Royal Society of London, died
in India on 26 April, 1920, aged 32. The manuscript from which this note is derived is a sequel to a short
memoir “Some properties of p(n), the number of partitions of n,” Proceedings of the Cambridge Philosophical

Society, Vol.XIX (1919), 207-210 [No.25 of this volume]. In this memoir Ramanujan proves that

p(5n+ 4) ≡ 0 (mod 5)

and
p(7n+ 5) ≡ 0 (mod 7),

and states without proof a number of further congruences to moduli of the form 5a7b11c of which the most
striking is

p(11n+ 6) ≡ 0 (mod 11).

Here now proofs are given of the first two congruences, and the first published proof of the third.
The manuscript contains a large number of further results. It is very incomplete, and will require very

careful editing before it can be published in full. I have taken from it the three simplest and most striking
results, as a short but characteristic example of the work of a man who was beyond question one of the
most remarkable mathematicians of his time.

I have adhered to Ramanujan’s notation, and followed his manuscript as closely as I can. A few insertions
of my own are marked by brackets. The most substantial of these is in § 5, where Ramanujan’s manuscript
omits the proof of (5.4). Whether I have reconstructed his argument correctly I cannot say.

The references given in the footnotes to “Ramanujan” are to his memoir “On certain arithmetical func-
tions,” Transactions of the Cambridge Philosophical Society, Vol. XXII, No.9 (1916), 159-184 [No.18 of this
volume].
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(1.4) Q3
−R2 = 1728x(f(x))24.

Further, let

(1.51) Φr,s(x) =

∞
∑

m=1

∞
∑

n=1

mrnsxmn =

∞
∑

n=1

nrσs−r(n)x
n,

where σk(n) is the sum of the kth powers of the divisors of n; so that

(1.52) Φ0,s(x) =
x

1− x
+

2sx2

1− x2
+

3sx3

1− x3
+ · · · ,

and in particular

(1.53) P = 1− 24Φ0,1(x), Q = 1 + 240Φ0,3(x), R = 1− 504Φ0,5(x).

Then [it may be deduced from the theory of the elliptic modular functions, and has been
shewn by the author in a direct and elementary manner ∗, that, when r + s is odd, and
r < s,Φr,s(x) is expressible as a polynomial in P,Q, and R, in the form

Φr,s(x) =
∑

kl,m,nP
lQmRn,

where
l − 1 ≤ Min (r, s), 2l + 4m+ 6n = r + s+ 1.

In particular †]

(1.61) Q2 = 1 + 480Φ0,7(x) = 1 + 480

(

x

1− x
+

27x2

1− x2
+ · · ·

)

,

(1.62) QR = 1− 264Φ0,9(x) = 1− 264

(

x

1− x
+

29x2

1− x2
+ · · ·

)

,

(1.63) 441Q3 + 250R2 = 691 + 65520Φ0,11(x)

= 691 + 65520

(

x

1− x
+

211x2

1− x2
+ · · ·

)

,

∗Ramanujan, p. 165 [pp. 181 – 183].
†Ramanujan, pp. 163 – 165 [pp. 180 – 181] (Tables I to III). Ramanujan carried the calculation of

formulæ of this kind to considerable lengths, the formula of Table I being

7709321041217 + 32640Φ0,31(x) = 764412173217Q8

+5323905468000Q5
R

2 + 1621003400000Q2
R

4
.

It is worth while to quote one such formula; for it is impossible to understand Ramanujan without realising
his love of numbers for their own sake.
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(1.71) Q− P 2 = 288Φ1,2(x),

(1.72) PQ−R = 720Φ1,4(x),

(1.73) Q2
− PR = 1008Φ1,6(x),

(1.74) Q(PQ−R) = 720Φ1,8(x),

(1.81) 3PQ− 2R − P 3 = 1728Φ2,3(x),

(1.82) P 2Q− 2PR +Q2 = 1728Φ2,5(x),

(1.83) 2PQ2
− P 2R−QR = 1728Φ2,7(x),

(1.91) 6P 2Q− 8PR + 3Q2
− P 4 = 6912Φ3,4(x),

(1.92) P 3Q− 3P 2R+ 3PQ2
−QR = 3456Φ3,6(x),

(1.93) 15PQ2
− 20P 2R+ 10P 3Q− 4QR− P 5 = 20736Φ4,5(x).

Modulus 5

2. We denote generally by J an integral power-series in x whose coefficients are integers.
It is obvious from (1.12) that

Q = 1 + 5J.

Also n5 − n ≡ 0 (mod 5), and so, from (1.11) and (1.13),

R = P + 5J.

Hence

Q3
−R2 = Q(1 + 5J)2 − (P + 5J)2 = Q− P 2 + 5J.
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Using (1.4), (1.71), and (1.51), we obtain

(2.1) 1728x(f(x))24 = 288
∞
∑

n=1

nσ1(n)x
n + 5J.

Also
(1− x)25 = 1− x25 + 5J,

and so
(f(x))25 = f(x25) + 5J,

(2.2) (f(x))24 =
f(x25)

f(x)
+ 5J.

But
1

f(x)
= 1 + p(1)x+ p(2)x2 + · · · ,

and therefore, by (2.1) and (2.2),

(2.3) 1728xf(x25)(1 + p(1)x+ p(2)x2 + · · ·)

= 1728x
f(x25)

f(x)
= 1728x(f(x))24 + 5J

= 288
∞
∑

n=1

nσ1(n)x
n + 5J.

Multiplying by 2, rejecting multiples of 5, and replacing f(x25) by its expansion given by
(1.3), we obtain

(x− x26 − x51 + x126 + · · ·)(1 + p(1)x+ p(2)x2 + · · ·)

=

∞
∑

n=1

nσ1(n)x
n + 5J.

Hence

(2.4)
p(n− 1)− p(n− 26) − p(n− 51) + p(n− 126) + p(n− 176)
−p(n− 301) − · · · ≡ nσ1(n) (mod 5),

the numbers 1,26, 51, . . . being the numbers of the forms

25

2
n(3n− 1) + 1,

25

2
n(3n+ 1) + 1,

or, what is the same thing, of the forms

1

2
(5n − 1)(15n − 2),

1

2
(5n + 1)(15n + 2).
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In particular it follows from (2.3) that

(2.5) p(5m− 1) ≡ 0 (mod 5).

Modulus 7

3. It is obvious from (1.13) that

R = 1 + 7J.

Also n7 − n ≡ 0 (mod 7), and so, from (1.11) and (1.61),

Q2 = P + 7J.

Hence

(Q3
−R2)2 = (PQ− 1 + 7J)2 = P 2Q2

− 2PQ+ 1 + 7J
= P 2

− 2PQ+R+ 7J.

But, from (1.72) and (1.81),

P 3
− 2PQ+R = 144

∞
∑

n=1

(5nσ3(n)− 12n2σ1(n))x
n

=

∞
∑

n=1

(n2σ1(n)− nσ3(n))x
n + 7J.

And therefore

(3.1) (Q3
−R2)2 =

∞
∑

n=1

(n2σ1(n)− nσ3(n))x
n + 7J.

Again (by the same argument which led to (2.2)) we have

(3.2) (f(x))48 =
f(x49)

f(x)
+ 7J.

Combining (3.1) and (3.2), we obtain

(3.3)
x2

f(x49)

f(x)
= x2(f(x))48 + 7J = 17282x2(f(x))48 + 7J

= (Q3 −R2)2 + 7J
=

∑∞
n=1(n

2σ1(n)− nσ3(n))x
n + 7J.
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From (3.3) it follows (just as (2.4) and (2.5) followed from (2.3)) that

(3.4)
p(n− 2) − p(n− 51) − p(n− 100) + p(n− 247) + p(n− 345)

− p(n− 590) − · · · ≡ n2σ1(n)− nσ3(n) (mod 7),

the numbers, 2, 51, 100, . . . being those of the forms

1

2
(7n − 1)(21n − 4),

1

2
(7n + 1)(21n + 4);

and that

(3.5) p(7m− 2) ≡ 0 (mod 7).

Modulus 11.

4. It is obvious from (1.62) that

(4.1) QR = 1 + 11J.

Also n11 − n ≡ 0 (mod 11), and so, from (1.11) and (1.63),

(4.2) Q3
− 3R2 = 441Q3 + 250R2 + 11J

= 691 + 65520

(

x

1− x
+

211x2

1− x2
+ · · ·

)

+ 11J

= −2 + 48

(

x

1− x
+

2x2

1− x2
+ · · ·

)

+ 11J

= −2P + 11J.

It is easily deduced that

(4.3)
(Q3 −R2)5 = (Q3 − 3R2)5 −Q(Q3 − 3R2)3

−R(Q3 − 3R2)2 + 6QR+ 11J
= P 5 − 3P 3Q− 4P 2R+ 6QR + 11J.

[For

(Q3
− 3R2)5 −Q(Q3

− 3R2)3 −R(Q3
− 3R2)2 + 6QR

= (Q3
− 3R2)5 −Q3R2(Q3

− 3R2)3 −Q3R4(Q3
− 3R2)2 + 6Q6R6 + 11J

= Q15
− 16Q12R2 + 98Q9R4

− 285Q6R6 + 423Q3R8
− 243R10 + 11J

= (Q3
−R2)5 + 11J

by (4.1), and (4.3) then follows from (4.2).]
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Again, [if we multiply (1.74), (1.83), (1.92), and (1.93) by −1, 3, −4, and −1, and add, we
obtain, on rejecting multiples of 11,]

P 5
− 3P 3Q− 4P 2R+ 6QR = −5Φ1,8 + 3Φ2,7 + 3Φ3,6 − Φ4,5 + 11J ;

and from this and (4.3) follows

(4.4)
(Q3 −R2)5 = −

∑∞
n=1(5nσ7(n)− 3n2σ3(n)− 3n3σ5(n)

+n4σ1(n))x
n + 11J.

But (by the same argument which led to (2.2) and (3.2)) we have

(4.5) (f(x))120 =
f(x121)

f(x)
+ 11J.

From (4.4) and (4.5)

x5
f(x121)

f(x)
= x5(f(x))120 + 11J = 17285x5(f(x))120 + 11J

= (Q3
−R2)5 + 11J

= −

∞
∑

n=1

(5nσ7(n)− 3n2σ5(n)− 3n3σ3(n) + n4σ1(n))x
n + 11J.

It now follows as before that

(4.6)
p(n− 5) − p(n− 126) − p(n− 247) + p(n− 610) + p(n− 852)

− p(n− 1457) − · · · ≡ −n4σ1(n) + 3n3σ3(n) + 3n2σ5(n)
− 5nσ7(n) (mod 11),

5, 126, 247, . . . being the numbers of the forms

1

2
(11n − 2)(33n − 5),

1

2
(11n + 2)(33n + 5);

and in particular that

(4.7) p(11m− 5) ≡ 0 (mod 11).

5. If we are only concerned to prove (4.7), it is not necessary to assume quite so much.
Let us write ϑ for the operation x d

dx
. Then∗ we have

(5.11) ϑP =
1

12
(P 2

−Q),

∗Ramanujan, p.165 [pp. 181].
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(5.12) ϑQ =
1

3
(PQ−R),

(5.13) ϑR =
1

2
(PR−Q2).

From these equations we deduce [by straightforward calculation

864ϑ4P = P 5
− 10P 3Q− 15PQ2 + 20P 2R+ 4QR,

72ϑ3Q = 5P 3Q+ 15PQ2
− 15P 2R− 5QR,

24ϑ2R = −14PQ2 + 7P 2R+ 7QR.

The left-hand side of each of these equations is of the form

x
dJ

dx
.

Multiplying by 1,8, and 2, adding and rejecting multiples of 11, we find

(5.2) P 5
− 3P 3Q+ 2P 2R = x

dJ

dx
+ 11J.

We have also, by (5.11),

6P 2R− 6QR = 72xR
dP

dx
.

But, differentiating (4.2), and using (4.1), we obtain

72xR
dP

dx
= 36xR

(

−3Q2 dQ

dx
+ 6R

dR

dx

)

+ 11J

= −108xQ
dQ

dx
+ 216xR2 dR

dx
+ 11J

= x
dJ

dx
+ 11J.

Hence

(5.3) 6P 2R− 6QR = x
dJ

dx
+ 11J.

From (5.2) and (5.3) we deduce

P 5
− 3P 3Q− 4P 2R+ 6QR = x

dJ

dx
+ 11J,

and from (4.3)]

(5.4) (Q3
−R2)5 = x

dJ

dx
+ 11J.

Finally, from (4.5) and (5.4),

x5
f(x121)

f(x)
= x5(f(x))120 + 11J = (Q3

−R2)5 + 11J

= x
dJ

dx
+ 11J.

As the coefficient of x11m on the right-hand side is a multiple of 11, (4.7) follows immediately.
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