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1. Statement of the problem.

1.1 We denote by q a number of the form

(1.11) 2a23a35a5 · · · pap ,

where 2, 3, 5, . . . , p are primes and

(1.111) a2 ≥ a3 ≥ a5 ≥ . . . ≥ ap ;

and by Q(x) the number of such numbers which do not exceed x: and our problem is that
of determining the order of Q(x). We prove that

(1.12) Q(x) = exp

[

{l + o(l)} 2π√
3

√

(

log x

log log x

)

]

,

that is to say that to every positive ǫ corresponds an x0 = x0(ǫ), such that

(1.121)

(

2π√
3
− ǫ

)

√

(

log x

log log x

)

< logQ(x) <

(

2π√
3
+ ǫ

)

√

(

log x

log log x

)

,

for x > x0. The function Q(x) is thus of higher order than any power of log x, but of lower
order than any power of x.
The interest of the problem is threefold. In the first place the result itself, and the method
by which it is obtained, are curious and interesting in themselves. Secondly, the method of
proof is one which, as we shew at the end of the paper, may be applied to a whole class of
problems in the analytic theory of numbers: it enables us, for example, to find asymptotic
formulæ for the number of partitions of n into positive integers, or into different positive
integers, or into primes. Finally , the class of numbers q includes as a sub-class the “highly
composite” numbers recently studied by Mr.Ramanujan in an elaborate memoir in these
Proceedings† The problem of determining, with any precision, the number H(x) of highly

∗This paper was originally communicated under the title “A problem in the Analytic Theory of Numbers.”
†Ramanujan, “Highly Composite Numbers,” Proc. London Math. Soc., Ser.2, Vol.XIV 1915, pp. 347 –

409 [No. 15 of this volume].
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composite numbers not exceeding x appears to be one of extreme difficulty. Mr Ramanujan
has proved, by elementary methods, that the order of H(x) is at any rate greater than that
of log x∗: but it is still uncertain whether or not the order of H(x) is greater than that of
any power of log x. In order to apply transcendental methods to this problem, it would be
necessary to study the properties of the function

H(s) =
∑ 1

hs
,

where h is a highly composite number, and we have not been able to make any progress
in this direction. It is therefore very desirable to study the distribution of wider classes of
numbers which include the highly composite numbers and possess some at any rate of their
characteristic properties. The simplest and most natural such class is that of the numbers
q; and here progress is comparatively easy, since the function

(1.13) Q(s) =
∑ 1

qs

possesses a product expression analogous to Euler’s product expression for ζ(s), viz.

(1.14) Q(s) =

∞
∏

1

(

1

1− l−sn

)

,

where ln = 2 · 3 · 5 · · · pn is the product of the first n primes.
We have not been able to apply to this problem the methods, depending on the theory of
functions of a complex variable, by which the Prime Number Theorem was proved. The
function Q(s) has the line σ = 0† as a line of essential singularities, and we are not able to
obtain sufficiently accurate information concerning the nature of these singularities. But
it is easy enough to determine the behaviour of Q(s) as a function of the real variable s;
and it proves sufficient for our purpose to determine an asymptotic formula for Q(s) when
s→ 0, and then to apply a “Tauberian” theorem similar to those proved by Messrs Hardy
and Littlewood in a series of papers published in these Proceedings and elsewhere‡.
This “Tauberian” theorem is in itself of considerable interest as being (so far as we are
aware) the first such theorem which deals with functions or sequences tending to infinity
more rapidly than any power of the variable.

2. Elementary results.

2.1 Let us consider, before proceeding further, what information concerning the order of
Q(x) can be obtained by purely elementary methods.

∗As great as that of
log x

√

(log log x)

(log log log x)
3

2

: see p.385 of his memoir [p. 139 of this volume].

†We write as usual s = σ + it.
‡See, in particular, Hardy and Littlewood, “Tauberian theorems concerning power series and Dirichlet’s

series whose coefficients are positive,” Proc. London Math. Soc., Ser.2, Vol XIII, 1914, pp. 174 – 191; and
“Some theorems concerning Dirichlet’s series,” Messenger of Mathematics, Vol.XLIII, 1914, pp. 134 – 147.
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Let

(2.11) ln = 2 · 3 · 5 · · · pn = eϑ(pn) ,

where ϑ(x) is Tschebyshef’s function

ϑ(x) =
∑

p≤x
log p .

The class of numbers q is plainly identical with the class of numbers of the form

(2.12) lb11 l
b2
2 · · · lbnn ,

where b1 ≥ 0, b2 ≥ 0, . . . , bn ≥ 0.

Now every b can be expressed in one and only one way in the form

(2.13) bi = ci,m2
m + ci,m−12

m−1 + · · ·+ ci,0 ,

where every c is equal to zero or to unity. We have therefore

(2.14) q =
n
∏

i=1



l

m∑

j=0

ci,j2j

i



 =
m
∏

j=0

n
∏

i=1

l
ci,j2j

i =
m
∏

j=0

r2
j

j ,

say, where

(2.141) rj = l
c1,j
1 l

c2,j
2 · · · lcn,j

n .

Let r denote , generally, a number of the form

(2.15) r = l c11 l c22 · · · l cnn ,

where every c is zero or unity : and R(x) the number of such numbers which do not exceed
x. If q ≤ x, we have

r0 ≤ x, r21 ≤ x, r42 ≤ x, . . .

The number of possible values of r0, in formula (2.14), cannot therefore exceed R(x); the

number of possible values of r1 cannot exceed R(x
1

2 ); and so on. The total number of values
of q can therefore not exceed

(2.16) S(x) = R(x)R(x
1

2 )R(x
1

4 ) · · ·R(x2−̟

) ,

where ̟ is the largest number such that

(2.161) x2
−̟ ≥ 2, x ≥ 22

̟

.
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Thus

(2.17) Q(x) ≤ S(x).

2.2 We denote by f and g the largest numbers such that

(2.211) lf ≤ x ,

(2.212) l1l2 · · · lg ≤ x .

It is known∗ (and may be proved by elementary methods ) that constants A and B exist,
such that

(2.221) ϑ(x) ≥ Ax (x ≥ 2) ,

and

(2.222) pn ≥ Bn log n (n ≥ 1) .

We have therefore eApf ≤ x ,

f log f = O(log x) ,

(2.23) log f = O(log log x) ;

and
g
∑

1
ϑ(pν) ≤ log x ,

g
∑

1
pν = O(log x) ,

g
∑

1

ν log ν = O(log x) , g2 log g = O(log x) ,

(2.24) g = O

√

(

log x

log log x

)

.

But it is easy to obtain an upper bound for R(x) in terms of f and g. The number of
numbers l1, l2, . . . , not exceeding x, is not greater than f ; the number of products not
exceeding x, of pairs of such numbers, is a fortiori not greater than 1

2f(f − 1); and so on.
Thus

R(x) ≤ f +
f(f − 1)

2!
+
f(f − 1)(f − 2)

3!
+ · · · ,

where the summation need be extended to g terms only, since

l1l2 · · · lglg+1 > x .

∗See Landau, Handbuch, pp. 79, 83, 214.
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A fortiori, we have

R(x) ≤ 1 + f +
f2

2!
+ · · ·+ f g

g!
< (1 + f)g = eg log(1+f) .

Thus

(2.25) R(x) = eO(g log f) = eO(
√
log x log log x) ,

by (2.23) and (2.24). Finally, since

log
√
x log log

√
x <

1

2
log x log log x ,

it follows from (2.16) and (2.17) that

(2.26) Q(x) = exp

[

O

{(

1 +
1

2
+

1

4
+ · · ·+ 1

2̟

)

√

( log x log log x)

}]

= eO{
√

( log x log log x)}.

2.3 A lower bound for Q(x) may be found as follows. If g is defined as in 2.2, we have

l1l2 · · · lg ≤ x < l1l2 · · · lglg+1 .

It follows from the analysis of 2.2 that

lg+1 = eϑ(pg+1) = eO(g log g) ,

and l1l2 · · · lg = exp

{

g
∑

1

ϑ(pν)

}

= eO(g2 log g).

Thus x < eO(g2 log g);
which is only possible if g is greater than a constant positive multiple of

√

(

log x

log log x

)

.

Now the numbers l1, l2, . . . , lg can be combined in 2g different ways, and each such combi-
nation gives a number q not greater than x. Thus

(2.31) Q(x) ≥ 2g > exp

{

K

√

(

log x

log log x

)

}

,

where K is a positive constant. From (2.26) and (2.31) it follows that there are positive
constants K and L such that

(2.32) K

√

(

log x

log log x

)

< logQ(x) < L
√

( log x log log x) .
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The inequalities (2.32) give a fairly accurate idea as to the order of magnitude of Q(x).
But they are much less precise than the inequalities (1.121). To obtain these requires the
use of less elementary methods.

3. The behaviour of Q(s) when s→ 0 by positive values.

3.1. From the fact, already used in 2.1, that the class of numbers q is identical with the
class of numbers of the form (2.12), it follows at once that

(1.14) Q(s) =
∑ 1

qs
=

∞
∏

1

(

1

1− l−sn

)

.

Both series and product are absolutely convergent for σ > 0, and

(3.11) logQ(s) = φ(s) +
1

2
φ(2s) +

1

3
φ(3s) + · · · ,

where

(3.111) φ(s) =

∞
∑

1

l−sn .

We have also

(3.12) φ(s) =
1− 2−s

2s − 1
+ 2−s

1− 3−s

3s − 1
+ 2−s3−s

1− 5−s

5s − 1
+ · · ·

=
1

2s − 1
+ 2−s

(

1

3s − 1
− 1

2s − 1

)

+ 2−s3−s
(

1

5s − 1
− 1

3s − 1

)

+ · · ·

=
1

2s − 1

∞
∑

1

e−sϑ(pn)
∫ pn+1

pn

d

dx

(

1

xs − 1

)

dx

=
1

2s − 1
− s

∫ ∞

2

xs−1

(xs − 1)2
e−sϑ(x) dx .

3.2. Lemma. If x > 1, s > 0, then

(3.21)
1

(s log x)2
− 1

12
<

xs

(xs − 1)2
<

1

(s log x)2
.

Write xs = eu: then we have to prove that

(3.22)
1

u2
− 1

12
<

eu

(eu − 1)2
<

1

u2
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for all positive values of u ; or (writing w for 1
2u) that

(3.23)
1

w2
− 1

3
<

1

sinh2 w
<

1

w2

for all positive values of w. But it is easy to prove that the function

f(w) =
1

w2
− 1

sinh2 w

is a steadily decreasing function of w, and that its limit when w → 0 is 1
3 ; and this establishes

the truth of the lemma.

3.3. We have therefore

(3.31) φ(s) =
1

2s − 1
− φ1(s) =

1

s log 2
− φ1(s) +O(1) ,

where

(3.311)
1

s

∫ ∞

2

{

1

(log x)2
− s2

12

}

e−sϑ(x)
dx

x
< φ1(s) <

1

s

∫ ∞

2

e−sϑ(x)

(log x)2
dx

x
.

From the second of these inequalities, and (2.221), it follows that

φ1(s) <
1

s

∫ ∞

2

e−Asx

(log x)2
dx

x
=
e−2As

s log 2
−A

∫ ∞

2

e−Asx

log x
dx

=
1

s log 2
−A

∫ ∞

2

e−Asx

log x
dx+O(1) ;

and so that

(3.32) φ(s) > A

∫ ∞

2

e−Asx

log x
dx+O(1) .

On the other hand there is a positive constant B, such that

ϑ(x) < Bx (x ≥ 2)∗ .

Thus

φ1(s) >
1

s

∫ ∞

2

{

1

(log x)2
− s2

12

}

e−Bsx
dx

x
=

1

s

∫ ∞

2

e−Bsx

(log x)2
dx

x
+O(1)

=
1

s log 2
−B

∫ ∞

2

e−Bsx

log x
dx+O(1) ;

∗Landau, Handbuch, loc.cit
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and so

(3.33) φ(s) < B

∫ ∞

2

e−Bsx

log x
dx+O(1) .

3.4. Lemma. If H is any positive number, then

J(s) = H

∫ ∞

2

e−Hsx

log x
dx ∼ 1

s log(1/s)
,

when s→ 0.
Given any positive number ǫ, we can choose ξ and X, so that

∫ ξ

0
He−Hxdx < ǫ ,

∫ ∞

X
He−Hxdx < ǫ .

Now

s log

(

1

s

)

J(s) =

∫ ∞

2s

He−Hu log(1/s)
log u+ log(1/s)

du =

∫

√
s

2s
+

∫ ξ

√
s
+

∫ X

ξ
+

∫ ∞

X

= j1(s) + j2(s) + j3(s) + j4(s) ,

say. And we have

0 < j1(s) <
log(1/s)

log 2

∫

√
s

2s
He−Hudu = O{

√
s log(1/s)} = o(1) ,

0 < j2(s) < 2

∫ ξ

0
He−Hudu < 2ǫ ,

j3(s) =

∫ X

ξ
He−Hudu+ o(1) ,

0 < j4(s) <

∫ ∞

X
He−Hudu < ǫ ;

and so
∣

∣

∣

∣

1− s log

(

1

s

)

J(s)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0
He−Hudu− j1(s)− j2(s)− j3(s)− j4(s)

∣

∣

∣

∣

< 5ǫ+ o(1) < 6ǫ ,

for all sufficiently small values of s.

3.5. From (3.32), (3.33), and lemma just proved, it follows that

(3.51) φ(s) =
∑

l−sn ∼ 1

s log(1/s)
.
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From this formula we can deduce an asymptotic formula for logQ(s). We choose N so
that

(3.52)
∑

N<n

1

n2
< ǫ,

and we write

(3.53) logQ(s) =
∑ 1

n
φ(ns) =

∑

1≤n≤N
+

∑

N<n<1/
√
s

+
∑

1/
√
s≤n≤1/s

+
∑

1/s<n

= Φ1(s) + Φ2(s) + Φ3(s) + Φ4(s) ,

say.

In the first place

(3.541) Φ1(s) =
1 + o(1)

s log(1/s)

N
∑

1

1

n2
.

In the second place

φ(ns) = O

{

1

ns log(1/ns)

}

,

and

log(1/ns) >
1

2
log(1/s),

if N < n < 1/
√
s. It follows that a constant K exists such that

(3.542) Φ2(s) <
K

s log(1/s)

∑

N<n

1

n2
<

Kǫ

s log(1/s)
.

Thirdly,
√
s ≤ ns ≤ 1 in Φ3(s), and a constant L exists such that

φ(ns) <
L√

s log(1/s)
.

Thus

(3.543) Φ3(s) <
L√

s log(1/s)

1/s
∑

1

1

n
<

2L√
s
,

for all sufficiently small values of s.

Finally, in Φ4(s) we have ns > 1, and a constant M exists such that

φ(ns) < M2−ns .
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Thus

(3.544) Φ4(s) < M
∑

1/s<n

2−ns

n
< sM

∑

1/s<n

2−ns <
sM

1− 2−s
= O(1) .

From (3.53), (3.541)–(3.544), and (3.52) it follows that

(3.55) logQ(s) =
1

s log(1/s)

[

{1 + o(1)}
(

π2

6
+ ρ

)

+ ρ′
]

+O

{

1√
s log(1/s)

}

+O(1) ,

where

|ρ| < ǫ , |ρ′| < Kǫ.

Thus

(3.56) logQ(s) ∼ π2

6s log(1/s)
,

or

(3.57) Q(s) = exp

[

{1 + o(1)} π2

6s log(1/s)

]

.

4. A Tauberian theorem.

4.1. The passage from (3.57) to (1.12) depends upon a theorem of the “Tauberian” type.

Theorem A. Suppose that

(1) λ1 ≥ 0 , λn > λn−1 , λn → ∞ ;

(2) λn/λn−1 → 1 ;

(3) an ≥ 0 ;

(4) A > 0 , a > 0 ;

(5)
∑

ane
−λns is convergent for s > 0 ;

(6) f(s) =
∑

ane
−λns = exp

[

{1 + o(1)}As−α
{

log 1
s

}−β]
,

when s→ 0. Then

An = a1 + a2 + · · · + an = exp[{1 + o(1)}Bλα/(1+α)n (log λn)
−β/(1+α)] ,
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where

B = A1/(1+α)α−α/(1+α)(1 + α)1+[β/(1+α)] ,

when n→ ∞.

We are given that

(4.11) (1− δ)As−α
(

log
1

s

)−β
< log f(s) < (1 + δ)As−α

(

log
1

s

)−β
,

for every positive δ and all sufficiently small values of s; and we have to shew that

(4.12) (1− ǫ)Bλα/(1+α)n (log λn)
−β/(1+α) < logAn

< (1 + ǫ)Bλα/(1+α)n (log λn)
−β/(1+α) ,

for every positive ǫ and all sufficiently large values of n.
In the argument which follows we shall be dealing with three variables, δ, s and n (or m),
the two latter variables being connected by an equation or by inequalities, and with an
auxiliary parameter ζ. We shall use the letter η, without a suffix, to denote generally a
function of δ, s and n (or m)∗, which is not the same in different formulæ , but in all cases
tends to zero when δ and s tend to zero and n (or m) to infinity; so that, given any positive
ǫ, we have

0 < |η| < ǫ ,

for 0 < δ < δ0 , 0 < s < s0 , n > n0 .
We shall use the symbol ηζ to denote a function of ζ only which tends to zero with ζ, so
that

0 < |ηζ | < ǫ ,

if ζ is small enough. It is to be understood that the choice of a ζ to satisfy certain conditions
is in all cases prior to that of δ, s and n (or m). Finally, we use the letters H,K, . . . to
denote positive numbers independent of these variables and of ζ.
The second of the inequalities (4.12) is very easily proved. For

(4.131) Ane
−λns < a1e

−λ1s + a2e
−λ2s + · · ·+ ane

−λns

< f(s) < exp

{

(1 + δ)As−α
(

log
1

s

)−β
}

,

(4.132) An < expχ ,

where

(4.1321) χ = (1 + δ)As−α
(

log
1

s

)−β
+ λns.

∗η may, of course, in some cases be a function of some of these variables only.
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We can choose a value of s, corresponding to every large value of n, such that

(4.14) (1− δ)Aαs−1−α
(

log
1

s

)−β
< λn < (1 + δ)Aαs−1−α

(

log
1

s

)−β
.

From these inequalities we deduce, by an elementary process of approximation,

(4.151) (1− η)(Aα)−1/(1+α)λ1/(1+α)n

(

log
1

s

)β/(1+α)

<
1

s
< (1 + η)(Aα)−1/(1+α)λ1/(1+α)n

(

log
1

s

)β/(1+α)

,

(4.152)
1− η

1 + α
log λn < log

1

s
<

1 + η

1 + α
log λn ,

(4.153) (1− η)
αB

1 + α
λ−1/(1+α)
n (log λn)

−β/(1+α)

< s < (1 + η)
αB

1 + α
λ−1/(1+α)
n (log λn)

−β/(1+α) ,

(4.154) χ < (1 + η)Bλα/(1+α)n (log λn)
−β/(1+α).

We have therefore

(4.16) logAn < (1 + ǫ)Bλα/(1+α)n (log λn)
−β/(1+α) ,

for every positive ǫ and all sufficiently large values of n∗.

4.2. We have

(4.21) f(s) =
∑

ane
−λns =

∑

An(e
−λns − ǫ−λn+1s)

= s
∞
∑

1

An

∫ λn+1

λn

e−sxdx = s

∫ ∞

0
A(x)e−sxdx ,

where A(x) is the discontinuous function defined by

A(x) = An (λn ≤ x < λn+1)
† ,

∗We use the second inequality (4.12) in the proof of the first. It would be sufficient for our purpose to
begin by proving a result cruder than (4.16), with any constant K on the right-hand side instead of (1+ǫ)B.
But it is equally easy to obtain the more precise inequality. Compare the argument in the second of the
two papers by Hardy and Littlewood quoted on p.114 [p. 306 of this volume] (pp. 143 et seq.)

†Compare Hardy and Riesz, “The General Theory of Dirichlet’s Series,” Cambridge Tracts in Mathe-

matics, No.18, 1915, p.24.
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so that, by (4.16),

(4.22) logA(x) < (1 + ǫ)Bxα/(1+α)(log x)−β/(1+α)

for every positive ǫ and all sufficiently large values of x. We have therefore

(4.23) exp

{

(1− δ)As−α
(

log
1

s

)−β
}

< s

∫ ∞

0
A(x)e−sxdx

< exp

{

(1 + δ)As−α
(

log
1

s

)−β
}

for every positive δ and all sufficiently small values of s.

We define λx, a steadily increasing and continuous function of the continuous variable x,
by the equation

λx = λn + (x− n)(λn+1 − λn) (n ≤ x ≤ n+ 1) .

We can then choose m so that

(4.24)
1

s
=

1 + α

αB
λ1/(1+α)m (log λm)

β/(1+α) .

We shall now shew that the limits of the integral in (4.23) may be replaced by (1− ζ)λm
and (1 + ζ)λm, where ζ is an arbitrary positive number less than unity.

We write

(4.25) J(s) = s

∫ ∞

0
A(x)e−sxdx

= s

{

∫ λm/H

0
+

∫ (1−ζ)λm

λm/H
+

∫ (1+ζ)λm

(1−ζ)λm
+

∫ Hλm

(1+ζ)λm

+

∫ ∞

Hλm

}

= J1 + J2 + J3 + J4 + J5 ,

where H is a constant, in any case greater than 1, and large enough to satisfy certain
further conditions which will appear in a moment; and we proceed to shew that J1, J2, J4
and J5 are negligible in comparison with the exponentials which occur in (4.23), and so in
comparison with J3.

4.3 The integrals J1 and J5 are easily disposed of. In the first place we have

(4.31) J1 = s

∫ λm/H

0
A(x)e−sxdx < A

(

λm
H

)

< exp

{

(1 + δ)B

(

λm
H

)α/(1+α) (

log
λm
H

)−β/(1+α)
}

,



318 Paper 34

by (4.22)∗. It will be found, by a straightforward calculation, that this expression is less
than

(4.32) exp

{

(1 + η)A(1 + α)H−α/(1+α)s−α
(

log
1

s

)−β
}

,

and is therefore certainly negligible if H is sufficiently large.
Thus J1 is negligible. To prove that J5 is negligible we prove first that

sx > 4Bxα/(1+α)(log x)−β/(1+α) ,

if x > Hλm and H is large enough†. It follows that

J5 = s

∫ ∞

Hλm

A(x)e−sxdx < s

∞
∫

Hλm

exp{(1 + δ)Bxα/(1+α)(log x)−β/(1+α) − sx}dx

< s

∫ ∞

0
e−

1

2
sxdx =

1

2
,

and is therefore negligible.

4.4 The integrals J2 and J4 may be discussed in practically the same way, and we may
confine ourselves to the latter. We have

(4.41) J4(s) = s

∫ Hλm

(1+ζ)λm

A(x)e−sxdx < s

∫ Hλm

(1+ζ)λm

eψdx ,

where

(4.411) ψ = (1 + δ)Bxα/(1+α)(log x)−β/(1+α) − sx .

The maximum of the function ψ occurs for x = x0, where

(4.42)
1

s
= (1 + η)

1 + α

αB
x
1/(1+α)
0 (log x0)

β/(1+α) .

From this equation, and (4.24), it plainly results that

(4.43) (1− η)λm < x0 < (1 + η)λm ,

and that x0 falls (when δ and s are small enough) between (1− ζ)λm and (1 + ζ)λm.
Let us write x = x0 + ξ in J4. Then

ψ(x) = ψ(x0) +
1

2
(1 + δ)Bξ2

d2

dx21
{xα/(1+α)1 (log x1)

−β/(1+α)} ,

∗With δ in the place of ǫ.
†We suppress the details of the calculation, which is quite straightforward.
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where x0 < x1 < x and a fortiori

(1− ζ)λm < x1 < Hλm .

It follows that

(4.44)
d2

dx21
{xα/(1+α)1 (log x1)

−β/(1+α)} < −Kλα/(1+α)−2
m (log λm)

−β/(1+α).

On the other hand, an easy calculation shews that

(4.45) (1− η)As−α
(

log
1

s

)−β
< ψ(x0) < (1 + η)As−α

(

log
1

s

)−β
.

Thus

(4.46) J4 < exp

{

(1 + η)As−α
(

log
1

s

)−β
}

×
∫ ∞

(ζ−η)λm
exp{−Lξ2λα/(1+α)−2

m (log λm)
−β/(1+α)}dξ

< exp

{

(1 + η)As−α
(

log
1

s

)−β
−Mζ2λα/(1+α)m (log λm)

−β/(1+α)
}

< exp

{

(1 + η −Nζ2)As−α
(

log
1

s

)−β
}

.

Since ζ is independent of δ and s, this inequality shews that J4 is negligible; and a similar
argument may be applied to J2.

4.5 We may therefore replace the inequalities (4.23) by

(4.51) exp

{

(1− δ)As−α
(

log
1

s

)−β
}

< s

∫ (1+ζ)λm

(1−ζ)λm
A(x)e−sxdx < exp

{

(1 + δ)As−α
(

log
1

s

)−β
}

.

Since A(x) is a steadily increasing function of x, it follows that

(4.521) exp

{

(1− δ)As−α
(

log
1

s

)−β
}

< sA{(1 + ζ)λm}
∫ (1+ζ)λm

(1−ζ)λm
e−sxdx ,

(4.522) exp

{

(1 + δ)As−α
(

log
1

s

)−β
}

> sA{(1− ζ)λm}
∫ (1+ζ)λm

(1−ζ)λm
e−sxdx ;
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or

(4.531) (eζsλm − e−ζsλm)A{(1− ζ)λm} < exp

{

(1 + δ)As−α
(

log
1

s

)−β
+ λms

}

,

(4.532) (eζsλm − e−ζsλm)A{(1 + ζ)λm} > exp

{

(1− δ)As−α
(

log
1

s

)−β
+ λms

}

.

If we substitute for s, in terms of λm, in the right-hand sides of (4.531) and (4.532), we
obtain expressions of the form

exp{(1 + η)Bλα/(1+α)m (log λm)
−β/(1+α)} .

On the other hand
eζsλm − e−ζsλm

is of the form
exp{ηζλα/(1+α)m (log λm)

−β/(1+α)}.
We have thus

(4.541) A{(1− ζ)λm} < exp{(1 + ηζ + η)Bλα/(1+α)m (log λm)
−β/(1+α)} ,

(4.542) A{(1 + ζ)λm} > exp{(1 − ηζ − η)Bλα/(1+α)m (log λm)
−β/(1+α)} .

Now let ν be any number such that

(4.55) (1− ζ)λm ≤ λν ≤ (1 + ζ)λm .

Since λn/λn−1 → 1, it is clear that all numbers n from a certain point onwards will fall
among the numbers ν. It follows from (4.541) and (4.542) that

(4.56) exp{(1− ηζ − η)(1 − ηζ)Bλ
α/(1+α)
ν (log λν)

−β/(1+α)} < A(λν)

< exp{(1 + ηζ + η)(1 + ηζ)Bλ
α/(1+α)
ν (log λν)

−β/(1+α)} ;

and therefore that, given ǫ we can choose first ζ and then n0 so that

(4.57) exp{(1− ǫ)Bλα/(1+α)n (log λn)
−β/(1+α)} < A(λn)

< exp{(1 + ǫ)Bλα/(1+α)n (log λn)
−β/(1+α)} ,

for n ≥ n0. This completes the proof of the theorem.

4.6 There is of course a corresponding “Abelian” theorem, which we content ourselves with
enunciating. This theorem is naturally not limited by the restriction that the coefficients
an are positive.
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Theorem B. Suppose that

(1) λ1 ≥ 0 , λn > λn−1 , λn → ∞ ;

(2) λn/λn−1 → 1 ;

(3) A > 0 , 0 < α < 1 ;

(4) An = α1 + α2 + · · ·+ αn = exp
[

{1 + o(1)}Aλαn(log λn)−β
]

,

when n→ ∞. Then the series
∑

ane
−λns is convergent for s > 0, and

f(s) =
∑

ane
−λns = exp[{1 + o(1)}Bs−α/(1−α)

(

log
1

s

)−β/(1−α)
] ,

where

B = A1/(1−α)αα/(1−α)(1− α)1+[β/(1−α)],

when s→ 0.
The proof of this theorem, which is naturally easier than that of the correlative Taube-
rian theorem, should present no difficulty to anyone who has followed the analysis which
precedes.

4.7 The simplest and most interesting cases of Theorems A and B are those in which

λn = n , β = 0 .

It is then convenient to write x for e−s. We thus obtain

Theorem C. If A > 0, 0 < α < 1, and

logAn = log(a1 + a2 + · · ·+ an) ∼ Anα ,

then the series
∑

anx
n is convergent for |x| < 1, and

log f(x) = log(
∑

anx
n) ∼ B(1− x)−α/(1−α) ,

where

B = (1− α)αα/(1−α)A1/(1−α),

when x→ 1 by real values.

If the coefficients are positive the converse inference is also correct. That is to say, if

A > 0 , α > 0 ,

and

log f(x) ∼ A(1− x)−α ,
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then

logAn ∼ Bnα/(1+α),

where

B = (1 + α)α−α/(1+α)A1/(1+α).

5. Application to our problem, and to other problems in the Theory of Numbers.

5.1 We proved in 3 that

(3.56) logQ(s) ∼ π2

6s log (1/s)
.

In Theorem A take

λn = log n , A =
π2

6
, α = 1 , β = 1 .

Then all the conditions of the theorem are satisfied. And An isQ(n), the number of numbers
q not exceeding n. We have therefore

(5.11) logQ(n) ∼ B

√

(

log n

log log n

)

,

where

(5.12) B = 2
3

2

√

(

π2

6

)

=
2π√
3
.

5.2 The method which we have followed in solving this problem is one capable of many
other interesting applications.

Suppose, for example, that Rr(n) is the number of ways in which n can be represented as
the sum of any number of rth powers of positive integers∗.
We shall prove that

(5.21) logRr(n) ∼ (r + 1)

{

1

r
Γ

(

1

r
+ 1

)

ζ

(

1

r
+ 1

)}r/(r+1)

n1/(r+1) .

∗Thus 28 = 33 + 13 = 3 · 23 + 4 · 13 = 2 · 23 + 12 · 13 = 23 + 20 · 13 = 28 · 13 : and R3(28) = 5.
The order of the powers is supposed to be indifferent, so that (e.g.) 33 +13 and 13 +33 are not reckoned as
separate representations.
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In particular, if P (n) = R1(n) is the number of partitions of n, then

(5.22) logP (n) ∼ π

√

2n

3
.

We need only sketch the proof, which is in principle similar to the main proof of this paper.
We have

∞
∑

1

Rr(n)e
−ns = Π∞

1

(

1

1− e−sνr

)

,

and so

(5.23) f(s) =

∞
∑

1

{Rr(n)−Rr(n− 1)}e−ns = Π∞
2

(

1

1− e−sνr

)

.∗

It is obvious that Rr(n) increases with n and that all the coefficients in f(s) are positive.
Again,

(5.24) log f(s) =
∞
∑

2

log

(

1

1− e−sνr

)

=
∞
∑

2

(e−sν
r

+
1

2
e−2sνr + · · ·)

=
∞
∑

k=1

1

k
φ(ks) ,

where

(5.241) φ(s) =
∞
∑

2

e−sν
r

.

But

(5.25) φ(s) ∼ Γ

(

1

r
+ 1

)

s−1/r ,

when s→ 0; and we can deduce, by an argument similar to that of 3.5, that

(5.26) log f(s) ∼ Γ

(

1

r
+ 1

)

ζ

(

1

r
+ 1

)

s−1/r .

We now obtain (5.21) by an application of Theorem A, taking

λn = n , α =
1

r
, β = 0 , A = Γ

(

1

r
+ 1

)

ζ

(

1

r
+ 1

)

.

∗Rr(0) is to be interpreted as zero.
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In a similar manner we can shew that, if S(n) is the number of partitions of n into different

positive integers, so that

∑

S(n)e−ns = (1 + e−s)(1 + e−2s)(1 + e−3s) + · · ·

=
1

(1− e−s)(1− e−3s)(1− e−5s) · · · ,

then

(5.27) log S(n) ∼ π

√

n

3
;

that if Tr(n) is the number of representations of n as the sum of rth powers of primes,
then

(5.28) log Tr(n) ∼ (r + 1)

{

Γ

(

1

r
+ 2

)

ζ

(

1

r
+ 1

)}r/(r+1)

n1/(r+1)(log n)−r/(r+1) ;

and, in particular, that if T (n) = T1(n) is the number of partitions of n into primes, then

(5.281) log T (n) ∼ 2π√
3

√

(

n

log n

)

.

Finally, we can shew that if r and s are positive integers, a > 0, and 0 ≤ b ≤ 1, and

(5.291)
∑

φ(n)xn =
{(1 + ax)(1 + ax2)(1 + ax3) · · ·}r
{(1 + bx)(1 + bx2)(1 + bx3) · · ·}s ,

then

(5.292) log φ(n) ∼ 2
√

(cn) ,

where

(5.2921) c = r

∫ a

0

log(1 + t)

t
dt− s

∫ b

0

log(1− t)

t
dt .

In particular, if a = 1, b = 1 , and r = s, we have

(5.293)
∑

φ(n)xn = (1− 2x+ 2x4 − 2x9 + · · ·)−r ,

(5.294) log φ(n) ∼ π
√

(rn) .

[Added March 28th, 1917. – Since this paper was written M.G.Valiron (“Sur la croissance
du module maximum des séries entières,” Bulletin de la Société mathématique de France,
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Vol.XLIV, 1916, pp. 45 – 64) has published a number of very interesting theorems con-
cerning power-series which are more or less directly related to ours. M.Valiron considers
power-series only, and his point of view is different from ours, in some respects more re-
stricted and in others more general.
He proves in particular that the necessary and sufficient conditions that

logM(r) ∼ A

(1− r)α
,

where M(r) is the maximum modulus of f(x) =
∑

anx
n for |x| = r, are that

log |an| < (1 + ǫ)(1 + α)A1/(1+α)
(n

α

)α/(1+α)

for n > n0(ǫ), and

log |an| > (1− ǫp)(1 + α)A1/(1+α)
(n

α

)α/(1+α)

for n = np (p = 1, 2, 3, . . .), where np+1/np → 1 and ǫp → 0 as p→ ∞.

M.Valiron refers to previous, but less general or less precise, results given by Borel (Leçons
sur les séries à termes pośıtifs, 1902, Ch. V) and by Wiman (“Über dem Zusammen-
hang zwischen dem Maximal-betrage einer analytischen Funktion und dem grössten Gliede
der zugehörigen Taylor’schen Reihe,” Acta Mathematica, Vol.XXXVII, 1914, pp. 305 –
326). We may add a reference to Le Roy, “Valeurs asymptotiques de certaines séries
procédant suivant les puissances entières et positives d’une variable réelle,” Bulletin des

sciences mathématiques, Ser.2, Vol. XXIV, 1900, pp.245 – 268.
We have more recently obtained results concerning P (n), the number of partitions of n, far
more precise than (5.22). A preliminary account of these researches has appeared, under
the title “Une formule asymptotique pour le nombre des partitions de n,” in the Comptes

Rendus of January 2nd, 1917∗; and a fuller account has been presented to the Society. See
Records of Proceedings at Meetings, March 1st, 1917†.]

∗[No. 31 of this volume.]
†[No. 33 of this volume; see also No. 36.]


