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1. A very large proportion of the most interesting arithmetical functions – of the functions,
for example, which occur in the theory of partitions, the theory of the divisors of numbers,
or the theory of the representation of numbers by sums of squares – occur as the coefficients
in the expansions of elliptic modular functions in powers of the variable q = eπiτ . All of
these functions have a restricted region of existence, the unit circle |q| = 1 being a “natural
boundary” or line of essential singularities. The most important of them, such as the
functions∗

(1.1) (ω1/π)
12∆ = q2{(1− q2)(1− q4) · · ·}24,

(1.2) ϑ3(0) = 1 + 2q + 2q4 + 2q9 + · · · ,

(1.3) 12
(ω1

π

)4
g2 = 1 + 240

(

13q2

1− q2
+

23q4

1− q4
+ · · ·

)

,

(1.4) 216
(ω1

π

)6
g3 = 1− 504

(

15q2

1− q2
+

25q4

1− q4
+ · · ·

)

,

are regular inside the unit circle; and many, such as the functions (1.1) and (1.2), have the
additional property of having no zeros inside the circle, so that their reciprocals are also
regular.
In a series of recent papers† we have applied a new method to the study of these arithmetical
functions. Our aim has been to express them as series which exhibit explicitly their order
of magnitude, and the genesis of their irregular variations as n increases. We find, for
example, for p(n), the number of unrestricted partitions of n, and for rs(n), the number of
representations of n as the sum of an even number s of squares, the series

∗We follow, in general, the notation of Tannery and Molk’s Éléments de la théorie des fonctions ellip-

tiques. Tannery and Molk, however, write 16G in place of the more usual ∆.
†(1) G. H. Hardy and S. Ramanujan, “Une formule asymptotique pour le nombre des partitions de n,”

Comptes Rendus, January 2, 1917 [No. 31 of this volume]; (2) G. H. Hardy and S. Ramanujan, “Asymptotic
Formulæ in Combinatory Analysis,” Proc. London Math.Soc., Ser. 2, Vol. XVII, 1918, pp. 75 – 115 [No.
36 of this volume]; (3) S. Ramanujan, “On Certain Trigonometrical Sums and their Applications in the
Theory of Numbers,” Trans. Camb. Phil. Soc., Vol.XXII, 1918, pp. 259 – 276 [No. 21 of this volume]; (4)
G. H. Hardy, “On the Expression of a Number as the Sum of any Number of Squares, and in particular of
Five or Seven,” Proc. National Acad. of Sciences, Vol.IV, 1918, pp. 189 – 193: [and G. H. Hardy, “On the
expression of a number as the sum of any number of squares, and in particular of five,” Trans. American

Math. Soc., Vol.XXI, 1920, pp. 255 – 284].
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(1.5)
1

2π
√
2

d

dn

(

eCλn

λn

)

+
(−1)n

2π

d

dn

(

e
1

2
Cλn/2

λn

)

+ π

√

(

3

2

)

cos

(

2

3
nπ − 1

18
π

)

d

dn

(

eCλn/3

λn

)

+ · · · ,

where λn =

√

(

n− 1

24

)

and C = π

√

(

2

3

)

, and

(1.6)
πs/2

Γ(s/2)
n

s

2
−1{1−s

2 + 2cos(
1

2
nπ − 1

4
sπ)2

−s

2 + 2cos(
2

3
nπ − 1

2
sπ)3

−s

2 + · · ·};

and our methods enable us to write down similar formulæ for a very large variety of other
arithmetical functions.
The study of series such as (1.5) and (1.6) raises a number of interesting problems, some of
which appear to be exceedingly difficult. The first purpose for which they are intended is
that of obtaining approximations to the functions with which they are associated. Some-
times they give also an exact representation of the functions, and sometimes they do not.
Thus the sum of the series (1.6) is equal to rs(n)if s is 4, 6, or 8, but not in any other
case. The series (1.5) enables us, by stopping after an appropriate number of terms, to
find approximations to p(n) of quite startling accuracy; thus six terms of the series give
p(200) = 3972999029388, a number of 13 figures, with an error of 0.004. But we have never
been able to prove that the sum of the series is p(n) exactly, nor even that it is convergent.
There is one class of series, of the same general character as (1.5) or (1.6), which lends
itself to comparatively simple treatment. These series arise when the generating modular
function f(q) of φ(τ) satisfies an equation

φ(τ) = (a+ bτ)nφ

(

c+ dτ

a+ bτ

)

,

where n is a positive integer, and behaves, inside the unit circle, like a rational function;
that is to say, possesses no singularities but poles. The simplest examples of such functions
are the reciprocals of the functions (1.3) and (1.4). The coefficients in their expansions are
integral, but possess otherwise no particular arithmetical interest. The results, however,
are very remarkable from the point of view of approximation; and it is in any case, well
worthwhile, in view of the many arithmetical applications of this type of series, to study in
detail any example in which the results can be obtained by comparatively simple analysis.
We begin by proving a general theorem (Theorem 1) concerning the expression of a modular
function with poles as a series of partial fractions. This series is (as appears in Theorem
2) a “Poincaré’s series”: what our theorem asserts is, in effect, that the sum of a certain
Poincaré’s series is the only function which satisfies certain conditions. It would, no doubt,
be possible to obtain this result as a corollary from propositions in the general theory
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of automorphic functions; but we thought it best to give an independent proof, which is
interesting in itself and demands no knowledge of this theory.

2. Theorem 1. Suppose that

(2.1) f(q) = f(eπiτ) = φ(τ)
is regular for q = 0, has no singularities save poles within the unit circle, and satisfies the

functional equation

(2.2) φ(τ) = (a+ bτ)nφ

(

c+ dτ

a+ bτ

)

= (a+ bτ)nφ(T ),

n being a positive integer and, a, b, c, d any integers such that ad− bc = 1. Then

(2.3) f(q) = ΣR,

where R is a residue of f(x)/(q − x) at a pole of f(x), if |q| < 1; while if |q| > 1 the sum

of the series on the right hand side of (2.3) is zero.

The proof requires certain geometrical preliminaries.

3. The half-plane I(τ) > 0, which corresponds to the inside of the unit circle in the plane
of q, is divided up, by the substitutions of the modular group, into a series of triangles
whose sides are arcs of circles and whose angles are π/3, π/3, and 0∗. One of these, which
is called the fundamental polygon (P )†, has its vertices at the points ρ, ρ2, and i∞, where
ρ = eπi/3, and its sides are parts of the unit circle |τ | = 1 and the lines R(τ) = ±1

2 .
Suppose that Fm is the “Farey’s series” of order m, that is to say the aggregate of the
rational fractions between 0 and 1, whose denominators are not greater than m, arranged
in order of magnitude‡, and that h′/k′ and h/k, where 0 < h′/k′ < h/k < 1, are two
adjacent terms in the series. We shall consider what regions in the τ -plane correspond to
P in the T -plane, when

(3.1) T = −h′ − k′τ

h− kτ
, (3.2) T =

h− kτ

h′ − k′τ
.

Both of these substitutions belong to the modular group, since hk′ − h′k = 1. The points
i∞, 1/2,−1/2, in the T -plane correspond to h/k, (h+2h′)/(k + 2k′), (h− 2h′)/(k − 2k′) in
the τ -plane. Thus the lines R(T ) = 1

2 ,R(T ) = −1
2 correspond to semicircles described on

the segments
(

h

k
,
h+ 2h′

k + 2k′

)

,

(

h

k
,
h− 2h′

k − 2k′

)

respectively as diameters. Similarly the upper half of the unit circle corresponds to a
semicircle on the segment

(

h+ h′

k + k′
,
h− h′

k − k′

)

.

∗It is for many purposes necessary to divide each triangle into two, whose angles are π/2, π/3, and 0;
but this further subdivision is not required for our present purpose. For the detailed theory of the modular
group, see Klien-Fricke, Vorlesungen über die Theorie der Elliptischen Modulfunktionen, 1890-1892.

†See Fig. 1.
‡The first and last terms are 0/1 and 1/1. A brief account of the properties of Farey’s series is given in

§4.2 of our paper (2)[pp. 355 – 356 of this volume].
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The polygon P corresponds to the region bounded by these three semicircles. In particular,
the right hand edge of P corresponds to a circular arc stretching from h/k (where it cuts
the real axis at right angles) to the point

(3.3)
h′k′ + hk + 1

2(hk
′ + h′k) + 1

2 i
√
3

k2 + kk′ + k′2
corresponding to τ = ρ.
Similarly we find that the substitution (3.2) correlates to P a triangle bounded by semicir-
cles on the segments

(

h′

k′
,
h′ − 2h

k′ − 2k

)

,

(

h′

k′
,
h′ + 2h

k′ + 2k

)

,

(

h′ − h

k′ − k
,
h′ + h

k′ + k

)

.

In particular, the left hand edge of P corresponds to a circular arc from h′/k′ to the point
(3.3). These two arcs, meeting at the point (3.3), form a continuous path ω, connecting h/k
and h′/k′, every point of which corresponds, in virtue of one or other of the substitutions
(3.1) and (3.2), to a point on one of the rectilinear boundaries of P ∗.
Performing a similar construction for every pair of adjacent fractions of Fm, we obtain a
continuous path from τ = 0 to τ = 1. This path, and its reflexion in the imaginary axis,

∗Fig. 2 illustrates the case in which h/k = 3

5
, h′/k′ = 1

2
. These fractions are adjacent in F5 and F6, but

not in F7.
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give a continuous path from τ = −1 to τ = 1, which we shall denote by Ωm. To Ωm

corresponds a path in the q-plane, which we call Hm; Hm is a closed path, formed entirely
by arcs of circles which cut the unit circle at right angles.

1
2

5
9

4
7

7
12

5
8

3
5

2
3

Fig 2

The region shaded horizontally corresponds to P for the substitution (3.1), that

shaded vertically for the substitution (3.2). The thickest lines shew the path ω;

the line of medium thickness shews the semicircle which corresponds (for either

substitution) to the unit semicircle in the plane of T . The large incomplete

semicircle passes through τ = 1.

Since
h′

k′
<

h′ + 2h

k′ + 2k
,
h+ 2h′

k + 2k′
<

h

k
,

the path ω from h′/k′ to h/k is always passing from left to right, and its length is less than
twice that of the semicircle on (h′/k′, h/k), i.e., than π/kk′. The total length of Ωm is less
than 2π; and, since

∣

∣

∣

∣

dq

dτ

∣

∣

∣

∣

=
∣

∣πieπiτ
∣

∣ ≤ π,

the length of Hm is less than 2π2. Finally, we observe that the maximum distance of Ωm

from the real axis is less than half the maximum distance between two adjacent terms of
Fm, and so less than 1/2m∗. Hence Ωm tends uniformly to the real axis, and Hm to the
unit circle, when m −→ ∞.

4. The function φ(τ) can have but a finite number of poles in P ; we suppose, for simplicity,
that none of them lie on the boundary. There is then a constant K such that |f(q)| < K
on the boundary of P .

∗See Lemma 4.22 of our paper (2) [p. 356 of this volume].
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We now consider the integral

(4.1)
1

2πi

∫

f(x)

x− q
dx,

where |q| < 1 and the contour of integration is Hm
∗. By Cauchy’s Theorem, the integral is

equal to
f(q)− ΣR,

where R is a residue of f(x)/(q − x) at a pole of f(x) inside Hm
†. To prove our theorem,

then, we have merely to shew that the integral (4.1) tends to zero when m −→ ∞.
Let ω′

1 and ω1 be the left- and right-hand parts of ω, and ζ ′1, ζ1 and ζ the corresponding
arcs of Hm. The length of ω1 is, as we have seen, less than 1

2π/kk
′, and that of ζ1 than

1
2π

2/kk′. Further, we have, on ζ1,

|f(x)| = |φ(τ)| = |h− kτ |n|φ(T )| < K

{

k

(

h

k
− h′

k′

)}n

=
K

k′n
.

Thus the contribution of ζ1 to the integral is numerically less than C/(kk′n+1), where C is
independent of m; and the whole integral (4.1) is numerically less than

(4.2) 2CΣ
1

kk′

(

1

kn
+

1

k′n

)

,

where the summation extends to all pairs of adjacent terms of Fm.
When ν is fixed and m > ν, the number of terms of Fm whose denominators are less than
ν is a function of ν only, say N(ν). If h/k is one of these, and h′/k′ is adjacent to it,
k+ k′ > m‡, and so k′ > m− ν. Thus the terms of (4.2) in which either k or k′ is less than
ν contribute less than 8CN(ν)/(m− ν). The remaining terms contribute less than

4C

νn

∑ 1

kk′
=

4C

νn
.

Hence the sum (4.2) is less than
8CN(ν)

m− ν
+

4C

νn
,

and it is plain that, by choice of first ν and then m, this may be made as small as we
please. Thus (4.1) tends to zero and the theorem is proved. It should be observed that ΣR
must, for the present at any rate, be interpreted as meaning the limit of the sum of terms
corresponding to poles inside Hm; we have not established the absolute convergence of the
series.
We supposed that no pole of φ(τ) lies on the boundary of P . This restriction, however,
is in no way essential; if it is not satisfied, we have only to select our “fundamental poly-
gon” somewhat differently. The theorem is consequently true independently of any such
restriction.

∗Strictly speaking, f(x) is not defined at the points where Hm meets the unit circle, and we should
integrate round a path just inside Hm and proceed to the limit. The point is trivial, as f(x), in virtue of
the functional equation, tends to zero when we approach a cusp of Hm from inside.

†We suppose m large enough to ensure that x = q lies inside Hm.
‡See our paper (2), loc. cit., [p. 356]
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So far we have supposed |q| < 1. It is plain that, if |q| > 1, the same reasoning proves that
(4.3) ΣR = 0.

5. Suppose in particular that φ(τ) has one pole only, and that a simple pole at τ = α, with
residue A. The complete system of poles is then given by

(5.1) τ = a =
c+ dα

a+ bα
(ad− bc = 1),

If a and b are fixed, and (c, d) is one pair of solutions of ad− bc = 1, the complete system
of solutions is (c +ma, d +mb), where m is an integer. To each pair (a, b) correspond an
infinity of poles in the plane of τ ; but these poles correspond to two different poles only in
the plane of q, viz,
(5.2) q = ±q = ±eπia,
the positive and negative signs corresponding to even and odd values of m respectively. It
is to be observed, moreover, that different pairs (a, b) may give rise to the same pole q.
The residue of φ(τ) for τ = a is , in virtue of the functional equation (2.2),

A

(a+ bα)n+2
;

and the residue of f(q) for q = q is

A

(a+ bα)n+2

(

dq

dτ

)

τ=a

=
πiAq

(a+ bα)n+2
.

Thus the sum of the terms of our series which correspond to the poles (5.2) is

πiA

(a+ bα)n+2

(

q

q − q
− q

q + q

)

=
2πiA

(a+ bα)n+2

q2

q2 − q2
.

We thus obtain:
Theorem 2. If φ(τ) has one pole only in P , viz., a simple pole at τ = α with residue A,
and |q| < 1, then

(5.3) f(q) = 2πiA
∑ 1

(a+ bα)n+2

q2

q2 − q2
,

where

q = exp

(

c+ dα

a+ bα

)

πi;

c, d being any pair of solutions of ad− bc = 1, and the summation extending over all pairs

a, b, which give rise to distinct values of q. If |q| > 1, the sum of the series on the right-hand

side of (5.3) is zero.

If φ(τ) has several poles in P , f(q), of course, will be the sum of a number of series such
as (5.3). Incidentally, we may observe that it now appears that the series in question are
absolutely convergent.

6. As an example, we select the function
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(6.1) f(q) =
π6

216ω6
1g3

=
1

1− 504
∑∞

1
r5q2r

1−q2r

=

∞
∑

0

pnx
n,

say, where x = q2. It is evident that pn is always an integer; the values of the first 13
coefficients are
p0 = 1,
p1 = 504,
p2 = 270648,
p3 = 144912096,
p4 = 77599626552,
p5 = 41553943041744,
p6 = 22251789971649504,
p7 = 11915647845248387520,
p8 = 6380729991419236488504,
p9 = 3416827666558895485479576,
p10 = 1829682703808504464920468048,
p11 = 979779820147442370107345764512,
p12 = 524663917940510191509934144603104;

so that p12 is a number of 33 figures.

By means of the formulæ∗

g3 =
8

27
(e1 − e3)

2(1 + k2)(1 − 1

2
k2)(1− 2k2),

e1 − e3 =

(

π

2ω1

)2

{ϑ3(0)}4,
2K

π
= {ϑ3(0)}2,

we find that

1

f(q)
=

(

2K

π

)6

(1 + k2)(1 − 1

2
k2)(1 − 2k2).

The value of n is 6. The poles of f(q) correspond to the value of τ which make K = k2

equal to −1, 2 or 1
2 . It is easily verified† that these values are given by the general formula

τ =
c+ di

a+ bi
(ad− bc = 1),

so that

(6.2) q = exp

(

c+ di

a+ bi
πi

)

= exp

(

ac+ bd

a2 + b2
πi− π

a2 + b2

)

.

∗All the formulæ which we quote are given in Tannery and Molk’s Tables; see in particular Tables XXXVI
(3), LXXI (3), XCVI, CX (3).

†A full account of the problem of finding τ when κ if given will be found in Tannery and Molk, loc. cit.,
Vol. III, ch. 7 (“On donne k2 ou g2, g3; trouver τ ou ω1, ω3”).
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The value of α is i∗. In order to determine A we observe that

−504
d

dq

(

15q2

1− q2
+

25q4

1− q4
+ · · ·

)

= −1008

q

{

16q2

(1− q2)2
+

26q4

(1− q4)2
+ · · ·

}

.

The series in curly brackets is the function called by Ramanujan† Φ1,6 and‡

1008Φ1,6 = Q2 − PR,

where

P =
12η1ω1

π2
, Q = 12g2

(ω1

π

)4
, R = 216g3

(ω1

π

)6
.

Here R = 0, so that

1008Φ1,6 = Q2 = 1 + 480Φ0,7
§ = 1 + 480

(

17q2

1− q2
+

27q4

1− q4
+ · · ·

)

.

Hence we find that
A = i/πC, 2πiA = −2/C,

where

(6.3) C = 1 + 480

(

17

e2π − 1
+

27

e4π − 1
+ · · ·

)

.

Another expression for C is

(6.4) C = 144

(

K0

π

)8

,

where

(6.41) K0 =

∫ π/2

0

dθ
√

(1− 1
2 sin

2 θ)
=

{Γ(1/4)}2
4
√
π

.

We have still to consider more closely the values of a and b, over which the summation is
effected. Let us fix k, and suppose that (a, b) is a pair of positive solutions of the equation
a2 + b2 = k. This pair gives rise to a system of eight solutions, viz.,

(±a,±b), (±b,±a).

But it is obvious that, if we change the signs of both a and b, we do not affect the aggregate
of values of a. Thus we need only consider the four pairs

(a, b), (a,−b), (b, a), (b,−a).

∗It will be observed that in this case α is on the boundary of P ; see the concluding remarks of §4. As it
happens, τ = i lies on that edge of P (the circular edge) which was not used in the construction of Hm, so
that our analysis is applicable as it stands.

†S. Ramanujan, “On Certain Arithmetical Functions,” Trans. Camb. Phil. Soc., Vol. XXII, pp. 159 –
184 (p. 163) [No. 18 of this volume, p. 179].

‡Ramanujan, loc. cit., p. 164 [p. 181].
§Ramanujan, loc. cit., p. 163 [p. 180].
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If a or b is zero, or if a = b, these four pairs reduce to two.
It is easily verified that, if (a, b) leads to the pair of poles

q = ±q = ± exp

(

ac+ bd

a2 + b2
πi− π

a2 + b2

)

,

then (a,−b) and (b, a) each lead to q = ±q̄, where q̄ is the conjugate of q. Thus, in general
(a, b) and the solutions derived from it lead to four distinct poles, viz., ±q and ±q̄. These
four reduce to two in two cases, when q is real, so that q = q̄, and when q is purely
imaginary, so that q = −q̄. It is easy to see that the first case can occur only when k = 1,
and the second when k = 2∗.
If k = 1 we take a = 1, b = 0, c = 0, d = 1; and q = q̄ = e−π. If k = 2 we take
a = 1, b = 1, c = 0, d = 1; and q = −q̄ = ie−π/2. The corresponding terms in our series are

1

1− q2e2π
,

1

24(1 + qeπ)
.

If k > 2, and is a sum of two coprime squares a2 and b2, it gives rise to terms

1

(a+ bi)8
1

1− (q/q)2
+

1

(a− bi)8
1

1− (q/q̄)2
.

There is, of course, a similar pair of terms corresponding to every other distinct represen-
tation of k as a sum of coprime squares. Thus finally we obtain the following result:

Theorem 3. If

f(q) =
π6

216ω6
1g3

=
1

(

1− 504
∑∞

1
r5q2r

1−q2r

) =

∞
∑

0

pnq
2n,

and |q| < 1, then

(6.5)
1

2
Cf(q) =

1

1− q2e2π
+

1

24(1 + q2eπ)

+
∑

{

1

(a+ bi)8
1

1− (q/q)2
+

1

(a− bi)8
1

1− (q/q̄)2

}

;

∗When a and b are given, we can always choose c and d so that |ac+ bd| ≤ 1

2
(a2 + b2). If q is real, we

have ad− bc = 1 and ac+ bd = 0 simultaneously; whence

(a2 + b2)(c2 + d2) = 1.

If q is purely imaginary, we have

ad− bc = 1, 2|ac+ bd| = a2 + b2,

whence
(c2 + d2)2 = (|ac+ bd| − c2 − d2)2 + 1.

This is possible only if c2 + d2 = 1 and |ac+ bd| = 1, whence a2 + b2 = 2.
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where

C = 1 + 480

(

17

e2π − 1
+

27

e4π − 1
+ · · ·

)

=
9π4

16{Γ(3/4)}16 ,

q = exp

(

c+ di

a+ bi
πi

)

= exp

(

ac+ bd

a2 + b2
πi− π

a2 + b2

)

,

and q̄ is the conjugate of q. The summation applies to every pair of coprime positive

numbers a and b, such that k = a2 + b2 ≥ 5, such pairs, however, only being counted

as distinct if they correspond to independent representations of k as a sum of squares. If

|q| > 1, then the sum of the series on the right-hand side of (6.5) is zero.

7. It follows that

(7.1)
1

2
Cpn = e2nπ+

(−1)n

24
enπ+

∑

{

1

(a+ bi)8
q−2n +

1

(a− bi)8
q̄−2n

}

=
∑

(λ)

cλ(n)

λ4
e2nπ/λ,

say. Here λ is the sum of two coprime squares, so that

λ = 2a25a513a1317a17 · · · ,

where a2 is 0 or 1 and 5, 13, 17, . . . are the primes of the form 4k + 1; and the first few
values of cλ(n) are

c1(n) = 1, c2(n) = (−1)n, c5(n) = 2 cos
(

4
5nπ + 8arctan 2

)

,

c10(n) = 2 cos
(

3
5nπ − 8 arctan 2

)

, c13(n) = 2 cos
(

10
13nπ + 8arctan 5

)

.

The approximations to the coefficients given by the formula (7.1) are exceedingly remark-
able. Dividing by 1

2C, and taking n = 0, 1, 2, 3, 6, and 12, we find the following results:

(0) 0.944 (1) 505.361 (2) 270616.406
+0.059 −1.365 +31.585
−0.003 +0.004 +0.009

p0 = 1.000 p1 = 504.000 p2 = 270648.000

(3) 144912827.002 (6) 22251789962592450.237
−730.900 +9057051.688

−0.101 +2.081
−0.001 −0.006

p3 = 144912096.000 p6 = 22251789971649504.000

(12) 524663917940510190119197271938395.329
+1390736872662028.140

+2680.418
+0.130
−0.014
−0.003

p12 = 524663917940510191509934144603104.000
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An alternative expression for C is

C = 962e−8π/3{(1− e−4π)(1− e−8π) · · ·}16,

by means of which C may be calculated with great accuracy∗. To five places we have
2/C = 0.94373, which is very nearly equal to 352/373 = 0.94370.
It is easy to see directly that pn lies between the coefficients of xn in the expansions of

1

(1− 535x)(1 + 31x)
,

1− 7.5x

(1− 535.5x)(1 + 24x)
,

and so that
(535)n+1 − (−31)n+1

566
≤ pn ≤ 352(535.5)n + 21(−24)n

373
.

The function

Ω(x) =
∑

(λ)

cλ(x)

λ4
e2xπ/λ

has very remarkable properties. It is an integral function of x, whose maximum modulus is
less than a constant multiple of e2π|x|. It is equal to pn, an integer, when x = n, a positive
integer; and to zero when x = −n. But we must reserve the discussion of these peculiarities
for some other occasion.

∗Gauss, Werke, Vol. III, pp. 418 – 419, gives the values of various powers of e−π to a large number of
figures.


