Typical formulæ are:
(1) ${\mathfrak R}(\alpha+\beta) \gt 1$, (2) ${\mathfrak R}(\alpha-\beta) \lt 0$, (3)${\mathfrak R}(\alpha+\beta)\lt 1$.
But there are certain special cases in which a more stringent condition is required. A formula of a different character, deduced from (1), is
\begin{eqnarray*} \int\limits^\infty_{-\infty} \frac{J_{\alpha+x}(\lambda)} {\lambda^{\alpha + x}} \frac{J_{\beta -x}(\mu)}{\mu^{\beta-x}} e^{nix} dx = \left(\frac{2 \cos \half n}{\Omega}\right)^{\frac{1}{2}(\alpha+\beta)} \\ e^{\frac{1}{2}n(\beta-\alpha)i} J_{\alpha+\beta} \{\sqrt{(2 \Omega \cos \half n)}\} \:({\rm or} \: 0). \end{eqnarray*} Here $$\Omega = \lambda^2 e^{\frac{1}{2} ni} + \mu^2 e^{-\frac{1}{2} n i}; $$ the zero value is to be taken if $|n|+ \geq \pi$, the non-zero value otherwise; and the condition of convergence is, in general, that $${\mathfrak R} (\alpha+ \beta) \gt - 1.$$ The formulæ include a large number of interesting special cases, such as \begin{eqnarray*} \int\limits^\infty_{-\infty} \frac{dx}{\Gamma(\alpha+x)\Gamma(\beta-x)} &=& \frac{2^{\alpha+\beta-2}}{\Gamma(\alpha+\beta-1)}, \\ \int\limits^\infty_0 \frac{\sin \pi x dx}{x(x^2-1^2)(x^2-2^2) \cdots(x^2-k^2)} &=& (-1)^k \frac{2^{2k-1}\pi}{(2k)!}, \\ \int\limits^\infty_{-\infty} J_{\alpha+x} (\lambda) J_{\beta-x} (\lambda) dx &=& J_{\alpha+\beta} (2 \lambda). \end{eqnarray*} The formula \begin{eqnarray*} && \int\limits^\infty_{-\infty} \frac{dx}{\Gamma(\alpha+x)\Gamma(\beta-x)\Gamma(\gamma+x)\Gamma(\delta-x)} \\ && = \frac{\Gamma(\alpha+\beta+\gamma+\delta-3)} {\Gamma(\alpha+\beta-1)\Gamma(\beta+\gamma-1)\Gamma(\gamma+\delta-1) \Gamma(\delta+\alpha-1)}, \end{eqnarray*} may also be mentioned : it holds, in general, if $$ {\mathfrak R} (\alpha+ \beta+\gamma+\delta) \gt 3.$$ A fuller account of these formulæ will be published in the Quarterly Journal of Mathematics1
1[See No.27 of this volume]