Ramanujan's Papers
Some definite integrals
Journal of the Indian Mathematical Society, XI, 1919, 81 – 87
I have shewn elsewhere1 that the definite integrals
\begin{align*}
\phi_w (t) & = \int\limits^\infty_0 \frac{\cos \pi t x}{\cosh \pi x} e^{-\pi
w x^2} dx,\\
\psi_w (t) & = \int\limits^\infty_0 \frac{\sin \pi t x}{\sinh \pi x} e^{-\pi
w x^2} dx
\end{align*}
can be evaluated in finite terms if $w$ is any rational multiple of $i$.
In this paper I shall shew, by a much simpler method, that these integrals
can be evaluated not only for these values but also for many other values of
$t$ and $w$.
Now we have
\begin{eqnarray*}
\phi_w(t) &=& 2 \int^\infty_0 \int^\infty_0 \frac{\cos 2 \pi x
z}{\cosh \pi z} \cos \pi t x e^{-\pi w x^2} dx dz \\
&=& \frac{e^{-\frac{1}{4} \pi t^2 w'}}{\sqrt{w}} \int^\infty_0
\frac{\cosh \pi tx w'}{\cosh \pi x} e^{-\pi x^2 w'} dx
\end{eqnarray*}
where $w'$ stands for $1/w$.
It follows that
\begin{equation}
\phi_w (t) = \frac{1}{\sqrt{w}} e^{-\frac{1}{4}\pi t^2 w'} \phi_{w'} (i t
w').
\end{equation}
Again
\begin{eqnarray*}
\phi_w (t+w) &=& \frac{1}{\sqrt{w}} e^{-\frac{1}{4} \pi(t+w)^2 w'} \\
&& \times \int^\infty_0 \frac{\cosh(\pi t x/w) \cosh \pi x + \sinh \pi t
x/w \sinh \pi x}{\cosh \pi x} e^{-\pi x^2/w} dx \\
&=& \frac{1}{\sqrt{w}} e^{-\frac{1}{4} \pi(t+w)^2/w} \\
&& \times \left\{\half \sqrt{w} e^{\frac{1}{4} \pi t^2/w} + 2
\int^\infty_0 \int^\infty_0 \frac{\sin 2 \pi x z}{\sinh \pi z} \sinh
\frac{\pi t x}{w} e^{-\pi x^2/w} dx dz \right\}
\end{eqnarray*}
\begin{eqnarray*}
&=& \frac{1}{\sqrt{w}} e^{-\frac{1}{4} \pi(t+w)^2/w} \\
&& \times \left\{\half \sqrt{w} e^{\frac{1}{4} \pi t^2/w}
+\sqrt{w} e^{\frac{1}{4} \pi t^2/w} \int^\infty_0 \frac{\sin \pi t x}{\sinh
\pi x} e^{-\pi w x^2} dx \right\}.
\end{eqnarray*}
In other words
\begin{equation}
e^{\frac{1}{4} \pi t^2/w}\{\half + \psi_w (t)\} = e^{\frac{1}{4}
\pi(t+w)^{2/w}} \phi_w (t+w).
\end{equation}
It is obvious that
\begin{equation} \left.
\begin{split}
& \phi_w (t) = \phi_w (-t)\\
& \psi_w(t) = - \psi_w (-t)
\end{split}\right\}.
\end{equation}
From
(1),
(2) and
(3) we easily find that
\begin{eqnarray}
\half + \psi_w (t+i) = \frac{i}{\sqrt{w}} e^{-\frac{1}{4} \pi t^2/w}
\left\{\half - \psi_{w'} \left(\frac{it}{w} + i\right)\right\}.
\end{eqnarray}
It is easy to see that
\begin{eqnarray*}
\phi_w (i) = \frac{1}{2\sqrt{w}}; \;\;\; \psi_w(i) = \frac{i}{2\sqrt{w}}; \;\;\; \phi_w(w) =
\half e^{-\frac{1}{4}\pi w}; \\
\half - \psi_w (w) =e^{-\frac{1}{4}\pi w} \phi_w (0); \;\;\; \phi_w (w \pm i) =
\left(\frac{1}{2\sqrt{w}} + \frac{i}{2}\right) e^{-\frac{1}{4}\pi w}; \\
\psi_w (w\pm i) = \half \pm \frac{i}{2\sqrt{w}} e^{-\frac{1}{4}\pi w};\;\;\;
\phi_w(\half w) + \psi_w(\half w) = \half.
\end{eqnarray*}
Again we see that
\begin{equation}
\phi_w (t+i) + \phi_w(t-i) = \frac{1}{\sqrt{w}} e^{-\frac{1}{4}\pi t^2/ w};
\end{equation}
and
\begin{eqnarray}
\psi_w (t+i) - \psi_w(t-i) = \frac{i}{\sqrt{w}} e^{-\frac{1}{4}\pi t^2/ w}.
\end{eqnarray}
From
(1) and
(5) we deduce that
\begin{equation}
e^{\frac{1}{4}\pi(t+w)^2/ w} \phi_w (t+w) + e^{\frac{1}{4}\pi(t- w)^2/w}
\phi_w(t-w) = e^{\frac{1}{4}\pi t^2/w}.
\end{equation}
Similarly from
(4) and
(6) we obtain
\begin{equation}
e^{\frac{1}{4}\pi(t+w)^2/ w} \left\{\half-\psi_w (t+w)\right\} =
e^{\frac{1}{4}\pi(t- w)^2/w}
\{\half + \psi_w (t-w)\}.
\end{equation}
It is easy to deduce from
(5) that if $n$ is a positive integer, then
\begin{align}
& \phi_w(t)+(-1)^{n+1} \phi_w (t \pm 2ni)\notag\\
&\qquad = \frac{1}{\sqrt{w}} \left\{e^{-\frac{1}{4}\pi (t\pm i)^2/w} - e^{-\frac{1}{4}\pi (t\pm
3i)^2/w} + e^{-\frac{1}{4}\pi (t\pm 5i)^2/w} - \cdots \:{\rm to}\: n \:{\rm
terms}\:\right\}.
\end{align}
Similarly from
(6) we have
\begin{align}
& \psi_w(t) - \psi_w (t \pm 2ni)\notag\\
&\qquad = \mp \frac{i}{\sqrt{w}} \left\{e^{-\frac{1}{4}\pi (t + i)^2/w} +
e^{-\frac{1}{4}\pi (t + 3i)^2/w} + e^{-\frac{1}{4}\pi (t + 5i)^2/w}
+ \cdots \:{\rm to}\: n \:{\rm terms}\:\right\}.
\end{align}
Again from
(7) we have
\begin{eqnarray}
&& e^{\frac{1}{4}\pi t^2/w} \phi_w (t) + (-1)^{n+1}
e^{\frac{1}{4}\pi(t+2nw)^2/w
\phi_w(t+2nw)}\notag\\
&&\qquad = e^{\frac{1}{4} \pi(t+w)^2/w} - e^{\frac{1}{4}\pi(t+3w)^2/w} +
e^{\frac{1}{4}\pi(t+5w)^2/w} - \cdots \:\:{\rm to}\: n \:{\rm terms};
\end{eqnarray}
and from
(8)
\begin{eqnarray}
e^{\frac{1}{4} \pi t^2/w} \{\half + \psi_w (t) \} + (-1)^{n+1}
e^{\frac{1}{4}\pi(t+2nw)^2/w} \{\half + \psi_w (t+2nw)\}\notag\\
= e^{\frac{1}{4} \pi(t+2w)^2/w} - e^{\frac{1}{4}\pi(t+4w)^2/w} +
e^{\frac{1}{4}\pi(t+6w)^2/w} - \cdots \:\:{\rm to}\: n \:{\rm terms}.
\end{eqnarray}
Now, combining (9) and (11), we deduce that, if $m$ and $n$ are positive
integers and $s=t+2mw \pm 2ni$, then
\begin{align}
& \phi_w(s) + (-1)^{(m+1)(n+1)} e^{-\half \pi m (s+t)} \phi_w(t)\notag\\
&\quad = e^{-\frac{1}{4} \pi s^2/w} \left\{e^{\frac{1}{4} \pi (s-w)^2/w} -
e^{\frac{1}{4} \pi (s-3w)^2/w} + e^{\frac{1}{4} \pi (s-5w)^2/w} - \cdots \:{\rm to}\:
m \:{\rm terms} \:\right\}\notag\\
&\qquad + \frac{(-1)^{(m+1)(n+1)}}{\sqrt{w}} e^{-\half\pi m(s+t)} \notag\\
&\qquad \times \left\{e^{-\frac{1}{4}\pi(t\pm i)^2/w} - e^{-\frac{1}{4}\pi(t\pm
3i)^2/w} + e^{-\frac{1}{4}\pi(t\pm 5i)^2/w} - \cdots
\:{\rm to}\: n \:{\rm terms}\:\right\}.
\end{align}
Similarly, combining
(10) and
(12), we obtain
\begin{align}
& \half-\psi_w(s) + (-1)^{mn+m+1} e^{-\half \pi m (s+t)}\{\half -\psi_w(t)\} \notag\\
&\quad = e^{-\frac{1}{4} \pi s^2/w} \left\{e^{\frac{1}{4} \pi (s-2w)^2/w} -
e^{\frac{1}{4} \pi (s-4w)^2/w} + e^{\frac{1}{4} \pi (s-6w)^2/w} - \cdots \:{\rm
to}\: m \:{\rm terms} \:\right\}\notag\\
&\qquad \pm (-1)^{mn+m+1} \frac{i}{\sqrt{w}} e^{-\half \pi m (s+t)}\notag\\
&\qquad \times \left\{e^{-\frac{1}{4}\pi(t\pm i)^2/w}+ e^{-\frac{1}{4}\pi(t\pm
3i)^2/w} + e^{-\frac{1}{4}\pi(t\pm 5i)^2/w} + \cdots
\:{\rm to}\: n \:{\rm terms}\:\right\},
\end{align}
where $s$ and $t$ have the same relation as in
(13).
Suppose now that $s=t$ in (13) and (14).
Then we see that, if $w = in/m$, then
\begin{align}
& \phi_w(t) \{1 + (-1)^{(m+1)(n+1)} e^{-\pi m t}\}\notag\\
&\quad = e^{-\frac{1}{4} \pi t^2/w} \left\{e^{\frac{1}{4} \pi (t-w)^2/w} -
e^{\frac{1}{4} \pi (t-3w)^2/w} + e^{\frac{1}{4} \pi (t-5w)^2/w} - \cdots
\:{\rm to}\:m \:{\rm terms} \:\right\}\notag\\
&\qquad + \frac{(-1)^{(m+1)(n+1)}}{\sqrt{w}} e^{-\pi mt}
\left\{e^{-\frac{1}{4}\pi(t-i)^2/w} - e^{-\frac{1}{4}\pi(t-3i)^2/w}
+ \cdots \:{\rm to}\: n \:{\rm terms}\:\right\};
\end{align}
\begin{align}
& \{\half-\psi_w(t)\} \{1 + (-1)^{mn+m+1} e^{-\pi m t}\}\notag\\
&\quad \quad = e^{-\frac{1}{4} \pi t^2/w} \left\{e^{\frac{1}{4} \pi
(t-2w)^2/w} -e^{\frac{1}{4} \pi (t-4w)^2/w} + \cdots \: {\rm to}\: m \:{\rm
terms}\right\}\notag\\
&\qquad + (-1)^{mn+m} \frac{i}{\sqrt{w}} e^{-\pi mt}
\left\{e^{-\frac{1}{4}\pi(t-i)^2/w} - e^{-\frac{1}{4}\pi(t-3i)^2/w}
+ \cdots \:{\rm to}\: n \:{\rm terms}\:\right\}.
\end{align}
where $\sqrt{w}$ should be taken as
$$e^{\frac{1}{4} \pi i} \sqrt{ \left(\frac{n}{m}\right)}.$$
In (15) and (16) there is no loss of generality in supposing that one of the two
numbers $m$ and $n$ is odd.
Now equating the real and imaginary parts in (15), we deduce that, if $m$ and $n$ are
positive integers of which one is odd, then
\begin{align}
& 2 \cosh nt \int^\infty_0 \frac{\cos 2tx}{\cosh \pi x}
\cos \left(\frac{\pi m
x^2}{n}\right) dx \notag\\
&\quad = [\cosh \{(1-n) t\} \cos (\pi m/4n) - \cosh \{(3-n)t\}
\cos(9 \pi m/4n) + \cdots \:{\rm to}\: n \:{\rm terms}]\notag\\
&\qquad +\: \sqrt{\left(\frac{n}{m}\right)} \left[\cosh \left\{\left(
1-\frac{1}{m}\right)nt\right\} \cos \left(\frac{\pi}{4} - \frac{nt^2}{\pi m} +
\frac{\pi n}{4m}\right)
\right.\notag\\
&\qquad \left. - \cosh \left\{\left(1-\frac{3}{m}\right)nt\right\}
\cos \left(\frac{\pi}{4}
-\frac{nt^2}{\pi m} + \frac{9 \pi n}{4m}\right) + \cdots \:{\rm to}\: m \:{\rm
terms}\right];
\end{align}
and
\begin{align}
& 2 \cosh nt \int^\infty_0 \frac{\cos 2tx}{\cosh \pi x} \sin \left(\frac{\pi
m x^2}{n}\right) dx \notag\\
&\quad = -[\cosh \{(1-n) t\} \sin (\pi m/4n) - \cosh \{(3-n)t\} \sin(9 \pi m/4n)\notag\\
&\qquad + \cosh \{(5-n)t\} \sin (25 \pi/4n) - \cdots \:{\rm to}\: n\:{\rm terms}]\notag\\
&\qquad + \sqrt{\left(\frac{n}{m}\right)} \left[\cosh \left\{\left( 1-\frac{1}{m}
\right)nt\right\}\sin\left(\frac{\pi}{4} -
\frac{nt^2}{\pi m}+\frac{\pi n}{4m}\right)
\right.\notag\\
&\qquad \left. -\cosh\left\{\left(1-\frac{3}{m}\right)nt\right\}
\sin\left(\frac{\pi}{4}
-\frac{nt^2}{\pi m} + \frac{9 \pi n}{\pi m}\right) + \cdots \:{\rm to}\: n \:{\rm
terms}\right].
\end{align}
Equating the real and imaginary parts in (16), we can find similar
expressions for the integrals
$$ \int^\infty_0 \frac{\sin tx}{\sinh \pi x} \sin \left(\frac{\pi m
x^2}{n}\right) dx, \int^\infty_0 \frac{\sin tx}{\sinh \pi x} \cos
\left(\frac{\pi m x^2}{n}\right) dx. $$
From these formulæ we can evaluate a number of definite integrals, such as
\begin{eqnarray*}
\int^\infty_0 \frac{\cos 2 \pi t x}{\cosh \pi x} \cos \pi x^2 dx &=& \frac{1
+\sqrt{2} \sin \pi t^2}{2 \sqrt{2} \cosh \pi t}, \\
\int^\infty_0 \frac{\cos 2 \pi t x}{\cosh \pi x} \sin \pi x^2 dx &=&
\frac{-1 + \sqrt{2} \cos \pi t^2}{2 \sqrt{2} \cosh \pi t}, \\
\int^\infty_0 \frac{\sin 2 \pi t x}{\sinh \pi x} \cos \pi x^2 dx &=&
\frac{\cosh \pi t - \cos \pi t^2}{2 \sinh \pi t}, \\
\int^\infty_0 \frac{\sin 2 \pi t x}{\sinh \pi x} \sin \pi x^2 dx &=&
\frac{\sin \pi t^2}{2 \sinh \pi t},
\end{eqnarray*}
and so on.
Again supposing that $s=-t$ in (13), we deduce that if $t = mw \pm ni$,
where $m$ and $n$ are positive integers of which one at least is odd, then
\begin{eqnarray}
\phi_w(t) = \half e^{-\frac{1}{4} \pi t^2/w} \left\{e^{\frac{1}{4} \pi
(t-w)^2/w} - e^{\frac{1}{4} \pi (t-3w)^2/w} +
\cdots \:{\rm to}\: m \:{\rm terms} \right\} \notag\\
+ \frac{1}{2 \sqrt{w}} \left\{e^{-\frac{1}{4}\pi (t\mp i)^2/w} -
e^{-\frac{1}{4}\pi (t\mp 3i)^2/w}+\cdots\:{\rm to}\: n \:{\rm terms}\right\}.
\end{eqnarray}
This formula is not true when both $m$ and $n$ are even.
If $t = mw \pm ni$, where $m$ and $n$ are both even, then
\begin{align}
& \phi_w(t) + (-1)^{(1+\half m)(1+\half n)} e^{-\frac{1}{4} \pi mt}
\phi_w (0) \notag\\
&\quad = e^{-\frac{1}{4}\pi t^2/w} \left\{e^{\frac{1}{4}\pi(t-w)^2/w} -
e^{\frac{1}{4}\pi(t-3w)^2/w} + \cdots \:{\rm to}\:\: \half m \:{\rm
terms}\right\} \notag\\
&\qquad + \frac{(-1)^{1+\half m)(1+\half n)}}{\sqrt{w}} e^{-\frac{1}{4} \pi mt}
\left\{e^{\frac{1}{4}\pi/w} - e^{\frac{9}{4} \pi/w}
+ e^{\frac{25}{4} \pi/w} - \cdots
{\rm to}\:\:\half n \:{\rm terms}\right\}.
\end{align}
This is easily obtained by putting $t=0$ and then changing $s$ to $t$ in
(13). Similarly from
(14)
we deduce that if $t = mw \pm ni$, where $m$ and
$n$ are both even, or both odd, or $m$ is even and $n$ is odd, then
\begin{align}
\psi_w(t) &= -\half e^{-\frac{1}{4}\pi t^2/w} \left\{e^{\frac{1}{4}
\pi(t-2w)^2/w}
- e^{\frac{1}{4}\pi(t-4w)^2/w} + \cdots \:{\rm to}\:m\:{\rm
terms}\right\}\notag\\
&\quad \pm \frac{i}{2\sqrt{w}} \left\{e^{-\frac{1}{4}\pi(t\mp
i)^2/w} + e^{-\frac{1}{4}\pi (t\mp3i)^2/w} + \cdots \:{\rm to} \:n \:{\rm
terms}\right\}.
\end{align}
If $t = mw \pm ni$, where $m$ is odd and $n$ is even, then
\begin{align}
& \half - \psi_w(t) + \{(-1)^{1+\frac{1}{4}(m-1)(n+2)}
e^{-\frac{1}{4}\pi\{(m-1)t+mw\}} \phi_w (0) \notag\\
&\quad = e^{-\frac{1}{4} \pi t^2/w} \left\{e^{\frac{1}{4}\pi (t-2w)^2/w}
- e^{\frac{1}{4}
\pi(t-4w)^2/w} \cdots + \:{\rm to}\:\half (m-1) \:{\rm terms}\right\}\notag\\
&\qquad \pm (-1)^{1+\frac{1}{4} (m-1)(n+2)} \frac{i}{\sqrt{w}} e^{-\frac{1}{4}\pi(m-1)(t+w)}\notag\\
&\qquad \times \left\{e^{-\frac{1}{4}\pi (w\pm i)^2/w} - e^{-\frac{1}{4}\pi(w \pm
3i)^2/w} +
\cdots \:{\rm to} \:\:\half n \:{\rm terms}\right\}.
\end{align}
This is obtained by putting $t=w$ in
(14). A number of definite integrals
such as the following can be evaluated with the help of the above formulæ:
\begin{align*}
\int^\infty_0 \frac{\cos \pi tx}{\cosh \pi x} e^{-\pi(t+i)x^2} dx &=
\frac{1+i}{2\sqrt{2}} e^{-\frac{1}{4}\pi t} \left\{1-\frac{i}{\sqrt{(t+i)}}
\right\},\\
\int^\infty_0 \frac{\sin \pi t x}{\sinh \pi x} e^{-\pi(t+i)x^2} dx &=
\frac{1}{2} - \frac{1+i}{2\sqrt{2}} \cdot \frac{e^{-\frac{1}{4} \pi t}
}{\sqrt{(t+i)}},
\end{align*}
and so on.
1Messenger of Mathematics, Vol,44, 1915, pp. 75 – 85 [No.12 of this volume].